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NEAREST NEIGHBOR CLASSIFICATION IN INFINITE DIMENSION
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Abstract. Let X be a random element in a metric space (F , d), and let Y be a random variable
with value 0 or 1. Y is called the class, or the label, of X. Let (Xi, Yi)1≤i≤n be an observed i.i.d.
sample having the same law as (X, Y ). The problem of classification is to predict the label of a new
random element X. The k-nearest neighbor classifier is the simple following rule: look at the k nearest
neighbors of X in the trial sample and choose 0 or 1 for its label according to the majority vote.
When (F , d) = (�d, ||.||), Stone (1977) proved in 1977 the universal consistency of this classifier: its
probability of error converges to the Bayes error, whatever the distribution of (X, Y ). We show in this
paper that this result is no longer valid in general metric spaces. However, if (F , d) is separable and if
some regularity condition is assumed, then the k-nearest neighbor classifier is weakly consistent.
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1. General definitions and results about classification

Let X be a random element with values in a metric space (F , d), and let Y be a random variable with values 0
or 1. The distribution of the pair (X, Y ) is defined by:

• the probability measure µ of X :

µ(B) = �(X ∈ B) for all Borel sets B in F ;

• and the regression function η of Y in X :

η(x) = �(Y = 1|X = x) for all x ∈ F .

Assume we observe n independent and identically distributed copies (Xi, Yi)1≤i≤n: they are called the training
data, and briefly denoted by Dn. Now we would like to guess the label Y of a new random element X , with
X ∼ µ independent of the training data. To this aim, one has to construct a function gn : F → {0, 1}, called a
classifier. This classifier is usually obtained from an approximation ηn of η using the simple decision rule:

gn(x) =
{

1 if ηn(x) > 1
2

0 otherwise.
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x ∈ F

1

η(x)

g∗(x)

Figure 1. The regression function η and the associated Bayes classifier g∗.

It is easy to prove that the best possible solution is the Bayes classifier (see Fig. 1):

g∗(x) ∆= �{η(X)≥1/2}.

More precisely, we have the following proposition (see [7] for a proof):

Proposition 1.1 (optimality of the Bayes classifier). The quantity L∗ = �(g∗(X) �= Y ) is called the Bayes
error, or the Bayes risk. For every classifier gn : F → {0, 1}

�(gn(X) �= Y ) ≥ L∗.

More precisely, if gn(x) = �{ηn(x)≥1/2}, then:

0 ≤ �(gn(X) �= Y ) − L∗ = 2
∫
F

∣∣∣∣η(x) − 1
2

∣∣∣∣�{gn(x) �=g∗(x)}µ( dx) ≤ 2�|(η − ηn)(X)|.

Remark 1.2. If the label Y is a deterministic function of X , then L∗ = 0.

Of course, in general, one does not know the regression function η, nor the Bayes classifier g∗. From now on,
we focus our attention on the k-nearest neighbor classifier, sometimes simply called “nearest neighbor classifier”
from now on. Let us define the approximate regression function by:

ηn(X) ∆=
n∑

i=1

1
k

1{Xi∈k(X)}Yi =
k∑

i=1

1
k

Y(i),

where “Xi ∈ k(X)” means “Xi is one of the k nearest neighbors of X” and the notation (X(i), Y(i)) (we should
write (X(i)(X), Y(i)(X)) to be completely rigorous) means that the pairs (Xi, Yi)1≤i≤n have been re-indexed so
that:

d(X, X(1)) ≤ d(X, X(2)) ≤ · · · ≤ d(X, X(n)).

In case of equality, ties are broken by comparing auxiliary i.i.d. variables β1, . . . , βn, independent of all the other
random objects, and uniformly distributed on (0, 1). More precisely, assume we observe d(X, Xi) = d(X, Xj): if
βi < βj , we decide d(Xi, X) < d(X, Xj), otherwise we decide d(Xi, X) > d(X, Xj). This rule has the interesting
feature of making all the n! orderings have the same probability of occurrence.
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The associated decision function is
gn(X) ∆= 1{ηn(x)≥1/2}.

The probability of error conditional on Dn is defined by:

Ln
∆= �(gn(X) �= Y |Dn).

Ln is a random variable, and its expectation �[Ln] = �(gn(X) �= Y ) is a real number depending on the
parameters (k, n). We are interested in the asymptotic behavior, when: n → ∞, k → ∞ and k

n → 0. By
convention, from now on, we will simply write “ n → ∞” for these asymptotics.

Definition 1.3 (universal consistency). The k-nearest neighbor classifier is:
• universally weakly consistent if: limn→∞�[Ln] = L∗;
• universally strongly consistent if: limn→∞ Ln = L∗ almost surely.

The term “universally” means that the result is independent of the distribution µ and of the regression
function η. In the following, we are only interested in weak consistency. The main result is due to Stone.

Theorem 1.4 (Stone (1977)). With (F , d) = (�d, ||.||), the k-nearest neighbor classifier is universally weakly
consistent.

For the proof, we refer the reader to [7] or [13]. It is based on a geometrical result, known as Stone’s Lemma.
This powerful and elegant argument can unfortunately not be generalized to infinite dimension.

The notation (F , d) = (�d, ||.||) means that the metric d derives from a vector norm on �d. As we will see
in the next section, this point is essential for the validity of the result. Universal strong consistency in (�d, ||.||)
has been proved by Devroye et al. [6].

2. Consistency in general metric spaces

2.1. Separability of the metric space

To generalize Stone’s result, the first natural assumption is separability of the metric space (F , d). The
following example shows that this condition is required even in finite dimension.

Example: a pathological distance on [0, 1]
Let us define a distance d on [0, 1] as follows:

d(x, x′) =

⎧⎨
⎩

0 if x = x′

1 if xx′ = 0 and x �= x′

2 if xx′ �= 0 and x �= x′.

Since the triangle inequality holds, d is a distance on [0, 1]. But ([0, 1], d) is clearly not separable.
Let µ be the simple distribution defined as follows: with probability one half, one picks the origin 0 ; with

probability one half, one picks a point uniformly in [0, 1]. Mathematically speaking, if λ[0,1] denotes the Lebesgue
measure on [0, 1] and δ0 the Dirac measure at the origin:

µ =
1
2
δ0 +

1
2
λ[0,1].

The way to attribute a label y to a point x in [0, 1] is deterministic: if x = 0 then y = 0 ; if 0 < x ≤ 1 then
y = 1. As Y is a deterministic function of X , the Bayes risk L∗ is equal to zero. Nevertheless, it is intuitively
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clear that the asymptotic probability of error with the nearest neighbors rule does not converge to 0:

lim
n→∞�[Ln] =

1
2

> L∗ = 0.

So the nearest neighbors classifier is not weakly consistent in this context, although we are in finite dimension.
In general metric spaces, the separability assumption is sufficient to have convergence of the nearest neighbor

to the point of interest. This is what Cover and Hart noticed in 1967 [3]. From now on we will assume that
(F , d) is a separable metric space.

Proposition 2.1 (Cover and Hart (1967)). If x is in the support of µ, then limn→∞ d(Xk(x), x) = 0 with
probability one. If X is independent of the data and has probability measure µ, then with probability one

lim
n→∞ d(Xk(X), X) = 0.

We refer to [7] for the proof1.

2.2. The Besicovitch condition

As we will see later, separability of the metric space is not a sufficient assumption for consistency of the
nearest neighbor classifier. It is necessary to put an assumption on the regularity of the regression function η
with respect to the measure µ. More precisely, we will require a differentiation hypothesis that will be called
“the Besicovitch condition”. In what follows, we will use the symbol Bx,δ for the closed ball of radius δ centered
at x.

Hypothesis ((H): the Besicovitch condition ). For every ε > 0

lim
δ→0

µ{x ∈ F :
1

µ(Bx,δ)

∫
Bx,δ

|η(z) − η(x)| dµ(z) > ε} = 0.

Another formulation is the following convergence in probability:

1
µ(BX,δ)

∫
BX,δ

|η − η(X)| dµ
�−−−→

δ→0
0

We will discuss this condition in the final section. Let us now give the main result of this paper.

Theorem 2.2 (consistency of the nearest neighbor classifier). If (F , d) is separable and if the Besicovitch
condition H is fulfilled, then the nearest neighbor classifier is weakly consistent

�[Ln] −−−−→
n→∞ L∗.

Proof. Thanks to Proposition 1.1, it is sufficient to show convergence in L1:

lim
n→∞�|(η − ηn)(X)| = 0.

Let us introduce another approximation η̃n of the regression function:

η̃n(x) =
1
k

k∑
i=1

η(X(i)(x)).

1The proof there is written in �d with its usual norm, but the argument still works in any separable metric space.
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Then the triangle inequality gives:

� |(η − ηn)(X)| ≤ �|(η − η̃n)(X)| +�|(η̃n − ηn)(X)|.

• �|(η̃n − ηn)(X)|
This step is very classical. Cauchy-Schwarz inequality implies

�|(ηn − η̃n)(X)| ≤ (�[(ηn − η̃n)2(X)])1/2

=

⎧⎨
⎩�
⎡
⎣( k∑

i=1

1
k

(Y(i) − η(X(i)))

)2
⎤
⎦
⎫⎬
⎭

1/2

,

which gives

�|(ηn − η̃n)(X)| ≤
⎧⎨
⎩ 1

k2

∑
1≤i,j≤k

�
[
(Y(i) − η(X(i))) · (Y(j) − η(X(j)))

]⎫⎬⎭
1/2

.

We use the conditioning trick

�
[
(Y(i) − η(X(i))) · (Y(j) − η(X(j)))

]
= �
[
�
[
(Y(i) − η(X(i))) · (Y(j) − η(X(j)))|X1, . . . , Xn, β1, . . . , βn, X

]]
,

and remark that, conditionally on X1, . . . , Xn, β1, . . . , βn, X , we have no problem with ties, the ordering is
then fixed. Moreover, conditionally on Xi, the label Yi has Bernoulli distribution with expectation η(Xi)
and is independent of all the other random objects. Thus, given X1, . . . , Xn, β1, . . . , βn, X , the quantities
(Y(i) − η(X(i))) are independent centered random variables (see also [7] p.100 l+4). So if i �= j

�
[
(Y(i) − η(X(i))) · (Y(j) − η(X(j)))

]
= 0.

Thus there only remains

�|(ηn − η̃n)(X)| ≤
{

1
k2

k∑
i=1

�[(Y(i) − η(X(i)))2]

}1/2

,

and since |Y(i) − η(X(i))| ≤ 1, we have finally

�|(ηn − η̃n)(X)| ≤ 1√
k

,

which proves that limn→∞�|(ηn − η̃n)(X)| = 0.

• �|(η − η̃n)(X)|
Let F0 denote the support of µ. Then

�|(η − η̃n)(X)| =
∫
F0

�|(η̃n − η)(x)| dµ(x).
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From now on we keep x fixed. We use the conditioning trick again

�|(η̃n − η)(x)| = �

∣∣∣∣∣1k
k∑

i=1

(η(X(i)) − η(x))

∣∣∣∣∣
= �

[
�

[∣∣∣∣∣1k
k∑

i=1

(η(X(i)) − η(x))

∣∣∣∣∣ |d(x, X(k+1)(x))

]]
.

To simplify notation, let us denote d(j) = d(j)(x) = d(x, X(j)), for 1 ≤ j ≤ n. Then, using Lemma ?? given in
the appendix, we get:

�

[∣∣∣∣∣1k
k∑

i=1

(η(X(i)) − η(x))

∣∣∣∣∣ |d(k+1)

]
≤ �

[
1
k

k∑
i=1

∣∣(η(X(i)) − η(x))
∣∣ |d(k+1)

]

=
(
µ̃(Bx,d(k+1))

)−1
∫

Bx,d(k+1)

|(η(x′) − η(x))| dµ̃(x′),

with µ̃ = (�Ux,d(k+1)
+ 1

2�Sx,d(k+1)
)µ, where we denote respectively Ux,r = {y ∈ F , d(x, y) < r} and Sx,r =

{y ∈ F , d(x, y) = r} the open ball centered at x and of radius r, and its boundary. Now it is clear that for any
measurable positive function ϕ, we have

−1
2

∫
Bx,d(k+1)

ϕdµ ≤
∫

Bx,d(k+1)

ϕdµ̃ −
∫

Bx,d(k+1)

ϕdµ ≤ 0,

so that

�

[∣∣∣∣∣1k
k∑

i=1

(η(X(i)) − η(x))

∣∣∣∣∣ |d(k+1)

]
≤ 2

(
µ(Bx,d(k+1))

)−1
∫

Bx,d(k+1)

|(η − η(x))| dµ.

Thus we have:

�|(η − η̃n)(X)| ≤ 2�

[(
µ(BX,d(k+1))

)−1
∫

BX,d(k+1)

|(η − η(X))| dµ

]
.

Since the random variables
(
µ(BX,d(k+1))

)−1 ∫
BX,d(k+1)

|(η − η(X))| dµ are all smaller than 1, the proof will be

complete if we show that they converge in probability to 0. To see this, fix ε > 0, then for every δ0 > 0:

�

((
µ(BX,d(k+1))

)−1
∫

BX,d(k+1)

|(η − η(X))| dµ > ε

)
≤ �(d(k+1)(X) ≥ δ0)

+ sup
0≤δ≤δ0

�

(
(µ(BX,δ))

−1
∫

BX,δ

|(η − η(X))| dµ > ε

)
.

Now, the first term goes to 0 thanks to Cover and Hart’s result and the second one also thanks to the Besicovitch
assumption H. �

Remark 2.3. In finite dimension, Devroye [5] has already mentioned that the Besicovitch condition is the
cornerstone for nearest neighbor estimates as well as for kernel estimates.
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Figure 2. µ−continuity: another way to see the Besicovitch condition.

3. Discussion

3.1. Continuity of the regression function

It is clear that if η is continuous on (F , d), then the Besicovitch condition is automatically fulfilled. Neverthe-
less, intuitively, continuity is not necessary, since the principle of the nearest neighbor classifier is the following:
to guess the label Y of a new point X , just average the labels Yi for points Xi around X . The continuous
version which ensures the validity of this averaging method has an integral form: this is exactly the Besicovitch
condition.

As an illustration, we will give an example where the continuity condition on η is not fulfilled, but where the
k-nearest neighbor classifier is still consistent anyway. Before that, we formulate a stronger but more tractable
assumption than the Besicovitch condition.

Hypothesis ((H′): µ-continuity). For every ε > 0, for µ almost every x ∈ F

lim
δ→0

µ {z ∈ F : |η(z) − η(x)| > ε ∩ d(x, z) < δ}
µ {z ∈ F : d(x, z) < δ} = 0.

This is a kind of continuity of η with respect to the measure µ, whence the name µ-continuity (see figure 2).
Another equivalent definition is the following almost sure convergence:

1
µ(BX,δ)

∫
BX,δ

�{η−η(X)>ε} dµ −−−→
δ→0

0 a.s.

Proposition 3.1 (µ-continuity ⇒ the Besicovitch condition). If the regression function η is µ-continuous, then
the Besicovitch condition is fulfilled.

Proof. For µ almost every x ∈ F , take any ε > 0. Let us consider the following decomposition:

1
µ(Bx,δ)

∫
Bx,δ

|η(z) − η(x)| dµ =
1

µ(Bx,δ)

∫
Bx,δ

|η(z) − η(x)|�{η(z)−η(x)≤ε} dµ

+
1

µ(Bx,δ)

∫
Bx,δ

|η(z) − η(x)|�{η(z)−η(x)>ε} dµ.
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4

Figure 3. A trajectory (xt)0≤t≤1 of a Poisson process.

Now we use the fact that for all x and z in F , |η(z) − η(x)| ≤ 1. This gives:

1
µ(Bx,δ)

∫
Bx,δ

|η(z) − η(x)| dµ ≤ ε + µ {z ∈ F : |η(z) − η(x)| > ε|d(x, z) < δ}

So we have

lim
δ→0

1
µ(Bx,δ)

∫
Bx,δ

|η(z) − η(x)| dµ ≤ ε.

Since ε is arbitrary, that gives

lim
δ→0

1
µ(Bx,δ)

∫
Bx,δ

|η(z) − η(x)| dµ = 0.

Clearly, this almost sure convergence implies the Besicovitch condition H. �

More precisely, one can easily see that µ-continuity is equivalent to almost sure convergence in the Besicovitch
condition:

1
µ(BX,δ)

∫
BX,δ

|η − η(X)| dµ −−−→
δ→0

0 a.s.

As we see in the following example, the µ−continuity may be easier to check than the Besicovitch condition.
Now for the example: F is the space of all possible realizations of a Poisson process of fixed intensity 1

between initial time 0 and final time 1. Its elements are denoted x = (xt)0≤t≤1 or z = (zt)0≤t≤1. The distance
on F is derived from the L1 norm:

d(x, z) = ‖x − z‖1 =
∫ 1

0

|xt − zt| dt

It is clear that (F , ||.||1) is separable: consider for example the processes that jump at rational times between
time 0 and time 1. This is a countable set and for every δ > 0 and every x ∈ F , there exists such a process in
the ball Bx,δ.

The label of a process x is deterministic and depends only on the final point of the process: if x1 is even,
then y = 0. If x1 is odd, then y = 1. Since the label is deterministic, the Bayes risk L∗ is null. Moreover, it is
not difficult to see that η is nowhere continuous. Indeed, let us fix x ∈ F , δ ∈ (0, 1) and consider z ∈ F defined
as follows (see Fig. 4):

z(t) =
{

x(t) if 0 ≤ t ≤ 1 − δ
x(t) + 1 if 1 − δ < t ≤ 1.
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z(1) = 2

x(1) = 1

d(x, z) = ‖z − x‖1 = δ

δ

Figure 4. The curves x and x′ do not have the same label.

So z is at distance δ from x but has not the same label as x: since δ is arbitrary, this proves that η is not
continuous at point x. Since x is arbitrary, this proves that η is nowhere continuous. Nevertheless, we prove
now that the nearest neighbor rule is consistent, since the Besicovitch condition is fulfilled. For this, we use the
more tractable formulation H′. Let us fix ε > 0 and x ∈ F . The aim is to show that

lim
δ→0

µ ({|η(z) − η(x)| > ε} ∩ Bx,δ)
µ(Bx,δ)

= 0. (1)

We can estimate this quantity.

Lemma 3.2 (the ratio of small balls).

lim
δ→0

µ({|η(z) − η(x)| > ε} ∩ Bx,δ)
µ(Bx,δ)

= 0.

Proof. In a first time, let us suppose that the number M of jumps of the process x is strictly positive and denote
by t1, . . . , tM the jumping times, and t0 = 0. In the denominator, a process z is in Bx,δ if it jumps at times
t′1, . . . , t

′
M which are close enough to t1, . . . , tM :

∀i ∈ {1, . . . , M} |t′i − ti| <
δ

M
·

This is implied by:

∀i ∈ {1, . . . , M} ti − ti−1 − δ

M2
< t′i − t′i−1 < ti − ti−1 +

δ

M2
·
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Thus

µ

(
z : ∀i ∈ {1, . . . , M}, |t′i − ti| <

δ

M

)

≥ µ

(
z : ∀i ∈ {1, . . . , M}, ti − ti−1 − δ

M2
< t′i − t′i−1 < ti − ti−1 +

δ

M2

)

=
M∏
i=1

∫ + δ
M2

− δ
M2

exp[−(ti − ti−1) − s] ds

≥
[
2 sinh

(
δ

M2

)]M
exp
[
−M max

i∈{1,...,M}
(ti − ti−1)

]
.

But doing this, we have not enumerated all processes z ∈ Bx,δ, so we can only conclude that

µ(Bx,δ) ≥ C1(x)
[
sinh
(

δ

M2

)]M
,

for some constant C1(x) which does not depend on δ. For the numerator, since η takes values 0 and 1, we have

µ ({|η(z) − η(x)| > ε} ∩ Bx,δ) = µ ({η(z) �= η(x)} ∩ Bx,δ) .

Thus, if we consider the processes z with M jumps at times t′1, . . . , t
′
M such that

∀i ∈ {1, . . . , M} |t′i − ti| < δ,

and other jumps at times t′M+1, . . . such that

∀i > M |t′i − 1| < δ,

we get a set S of Poisson processes which is bigger than the one of interest. Briefly speaking

({|η(z) − η(x)| > ε} ∩ Bx,δ) ⊂ S.

Now, being an element of S implies

∀i ∈ {1, . . . , M} ti − ti−1 − δ < t′i − t′i−1 < ti − ti−1 + δ,

and
1 − tM − 2δ < t′M+1 − t′M < 1 − tM + δ < 1 − tM + 2δ.

Which gives:

µ ({|η(z) − η(x)| > ε} ∩ Bx,δ) = µ ({η(z) �= η(x)} ∩ Bx,δ)

≤
M∏
i=1

∫ +δ

−δ

exp[−(ti − ti−1) − s] ds

∫ 2δ

−2δ

exp[−(1 − tM ) − s] ds

≤ [sinh(δ)]M . sinh(2δ). exp[−M min
i∈{1,...,M}

(ti − ti−1) − (1 − tM )]

= C2(x).[sinh(δ)]M . sinh(2δ),
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Figure 5. Estimation of the numerator and denominator of equation (1).

for some constant C2(x) which does not depend on δ. The ratio of small balls is now

µ({|η(z) − η(x)| > ε} ∩ Bx,δ)
µ(Bx,δ)

≤ C2(x)
C1(x)

[
sinh(δ)

sinh( δ
M2 )

]M

sinh(2δ) −−−→
δ→0

0.

If x has no jump, the reasoning is the same. �

The result of the Lemma ensures that for every x ∈ F and for every ε > 0

lim
δ→0

µ {z ∈ F : |η(z) − η(x)| > ε|d(x, z) < δ} = 0.

As we have seen before, this implies the Besicovitch condition. So the nearest neighbor rule is consistent,
although η is nowhere continuous.

3.2. The Besicovitch assumption in infinite dimension

In this section, we discuss the the Besicovitch condition. If we restrict ourselves to finite dimension and
suppose that the distance d comes from a vector norm, the essential result is the following one (see for instance
[8], Chapter 1.7, pp 43-44).

Theorem 3.3 (Lebesgue-Besicovitch differentiation theorem). Let µ be a Radon measure on �d and f ∈
Lp

loc(�
d), then

lim
δ→0

1
µ(Bx,δ)

∫
Bx,δ

|f − f(x)|p dµ = 0

for µ almost every x.

In our case, µ is a probability measure on �d and η is bounded by 1, so this result can be directly applied.
Devroye [5] has already noted that this is another way to prove Stone’s theorem.

Corollary 3.4 (Stone’s theorem). In (�d, ||.||), the k-nearest neighbor classifier is universally weakly consistent.

Remark 3.5. If we wish to estimate the regression function η, our reasoning shows, moreover, that with the
nearest neighbor method

lim
n→∞� [|ηn(x) − η(x)|p] = 0

for µ almost every x.
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The Besicovitch condition H appears also in recent papers on connected problems: Abraham, Biau and
Cadre [1] use it for function classification with the kernel rule. Dabo-Niang and Rhomari [4] use it for nonpara-
metric regression estimation in general metric spaces.

Now the question is: what about the Besicovitch density condition in general metric spaces2?
This question has been studied by several authors in geometric measure theory, see for example [9, 11, 12].

Unlike the situation in �d, this condition is no longer automatically fulfilled in infinite dimension. In [11], Preiss
introduces a rather technical notion, called the σ-finite dimensionality of a metric on a space. He shows that it
is the sine qua non condition for the Besicovitch property for all measures on a metric space. Without delving
into the details of this notion, let us just mention that it is related to the σ-finite dimensionality of the space.
In fact, to return to the Poisson processes above, we were in precisely this situation.

Example. Fix M ≥ 0 and denote FM all possible realizations of the Poisson process that have exactly M
jumps. A process that has M jumps can be summarized by an M -dimensional vector of jump times. Then it
is obvious that the metric space (FM , ‖.‖1) is isometric to ([0, 1]M , ‖.‖1). So that we have the correspondence

(F , ‖.‖1) =
+∞⋃
M=0

(FM , ‖.‖1) ∼
+∞⋃
M=0

([0, 1]M , ‖.‖1),

and the σ-finite dimensionality is clear.
Let us focus now on the classical situation where (F , d) is a separable Hilbert space and µ a Gaussian measure.

Let ν denote the centered and normalized Gaussian measure on �, let (cn) be a non-increasing sequence of
positive numbers such that

∑+∞
n=0 cn < +∞ and let 	2(c) be the set of all sequences x = (xn) such that

|x|2 =
+∞∑
n=0

cnx2
n < +∞.

Then the measure µ = ν⊗� is a σ-additive measure in a Hilbert space, 	2(c). More precisely, each Gaussian
measure can be represented in this way.

Even in this rather comfortable context, one has to put conditions on the sequence (cn) to get the Besicovitch
property. To be precise, Preiss and Tǐser [12] have shown the following result: if there exists q < 1 such that

∀n ∈ � cn+1

cn
< q,

then the Besicovitch property is true for every function f ∈ L1(µ). Roughly speaking, if we see (cn) as the
sequence of variances of µ along the direction of base vectors, it means that these variances have to decay
exponentially fast: this is a very strong condition.

Now let us see an example which shows that if the Besicovitch condition is not fulfilled, there is not much
hope for classification with the nearest neighbor rule. This example is due to Preiss [10].

Example: a problematic case for nearest neighbor classification
In this paper, Preiss constructs a Gaussian measure µ in a separable Hilbert space F and a Borel set M ⊂ F
with µ(M) < 1 such that

lim
δ→0

µ(M ∩ Bx,δ)
µ(Bx,δ)

= 1

for µ almost every x ∈ F .

2Of course, we still suppose that the metric space is separable.
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Now suppose that X is distributed with respect to µ and its label Y is deterministic

Y = �M (X).

As usual the Bayes risk is equal to 0. Nevertheless, if we try to apply the nearest neighbor rule to this example,
it is intuitively clear that we have some problems in classifying elements x ∈ M . Indeed, one can easily prove
that

lim
n→∞

L∗
n ≥ 1

2
µ(M) > L∗ = 0.

It is worth mentioning that this result is not in contradiction with the one of Biau et al. [2]. In this paper,
they consider a random variable X taking values in a separable Hilbert space X , with label Y ∈ {0, 1}. They
establish the universal weak consistency of a neighbor-type classifier, but not of the classical nearest neighbor
classifier. More precisely, they reduce the infinite dimension of X by considering only the first d coefficients of
the Fourier series expansion of each Xi, and then perform nearest neighbor classification in �d. In fact, their
result and the example above suggest that in infinite dimension, the classical nearest neighbor classification is
not the right way to proceed.

Appendix A. Technical lemma

In this section we use the notation of the proof of Theorem 2.2. And for all x in F and r ≥ 0 we denote
respectively by Bx,r, Ux,r and Sx,r the closed ball and the open ball centered at x and of radius r, and their
boundary. We recall that in case of equality, the ties are broken by comparing auxiliary i.i.d. variables β1, . . . , βn,
independent of all the other random objects, and uniformly distributed in (0, 1).

Lemma A.1. Let F be a µ-integrable real function on F . For all x in the support of µ,

�[
1
k

k∑
j=1

F (X(j))| d(k+1)] = C

∫
Bx,d(k+1)

F (x′) dµ̃(x′),

where µ̃ = (�Ux,d(k+1)
+ 1

2�Sx,d(k+1)
)µ, and C is a normalizing d(k+1)-measurable constant

C =
(
µ̃(Bx,d(k+1))

)−1
.

Proof. Let Q(n) be the set of all n-permutations, Q denote the random permutation given by the ordering of
the nearest neighbor, and Q̃(n, k) all the subsets of k elements in {1, . . . , n}. C′ will denote a deterministic
constant. For all x ∈ F and all j ∈ {1, . . . , n} we will also use the notation dj = d(x, Xj). We have

�

⎡
⎣ k∑

j=1

F (X(j))| d(k+1)

⎤
⎦ = �

⎡
⎣ k∑

j=1

F (XQ(j))
∑

q∈Q(n)

�Q=q| dQ(k+1)

⎤
⎦

=
∑

q∈Q(n)

�

⎡
⎣ k∑

j=1

F (Xq(j))�Q=q | dQ(k+1)

⎤
⎦

=
∑

{q(1),...,q(k)}∈Q̃(n,k)

�

⎡
⎣ k∑

j=1

F (X(j))�{Q(1),...,Q(k)}={q(1),...,q(k)}| dQ(k+1)

⎤
⎦

= C′
�

⎡
⎣ k∑

j=1

F (Xj)�{Q(1),...,Q(k)}={1,...,k}| dQ(k+1)

⎤
⎦ .
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The last two equalities come from reordering the terms in the summation, and the fact that all the orderings
have the same probability. Then we decompose the event:

�{Q(1),...,Q(k)}={1,...,k} =
n∑

�=k+1

k∏
j=1

(�dj<d�
+ �βj<β�

�dj=d�
) ×

n∏
h=k+1

h �=�

(�dh>d�
+ �βh≥β�

�dh=d�
).

Then we have

�

⎡
⎣ k∑

j=1

F (Xj)�{Q(1),...,Q(k)}={1,...,k}| dQ(k+1)

⎤
⎦ =

n∑
�=k+1

�

⎡
⎢⎢⎣

k∑
j=1

F (Xj)
k∏

j=1

(�dj<d�
+ �βj<β�

�dj=d�
)

n∏
h=k+1

h �=�

(�dh>d�
+ �βh≥β�

�dh=d�
)| d�

⎤
⎥⎥⎦ ,

using the fact that the integrand can be non-zero only when d� = dQ(k+1). Then we use the fact that the couples
(Xj , dj) for j �= 	 are i.i.d., and we get:

�

⎡
⎢⎢⎣

k∑
j=1

F (Xj)
k∏

j=1

(�dj<d�
+ �βj<β�

�dj=d�
)

n∏
h=k+1

h �=�

(�dh>d�
+ �βh≥β�

�dh=d�
)| d�

⎤
⎥⎥⎦

=
k∑

j=1

�
[
F (Xj)(�dj<d�

+ �βj<β�
�dj=d�

)|d�

]×�
⎡
⎢⎢⎣

k∏
m=1
m �=j

(�dm>d�
+ �βm≥β�

�dm=d�
)| d�

⎤
⎥⎥⎦

×�

⎡
⎢⎢⎣

n∏
h=k+1

h �=�

(�dh>d�
+ �βh≥β�

�dh=d�
)| d�

⎤
⎥⎥⎦

= k� [F (X1)(�d1<d�
+ �β1<β�

�d1=d�
)|d�] ×�

[
k∏

m=2

(�dm>d�
+ �βm≥β�

�dm=d�
)| d�

]

×�

⎡
⎢⎢⎣

n∏
h=k+1

h �=�

(�dh>d�
+ �βh≥β�

�dh=d�
)| d�

⎤
⎥⎥⎦

=
k

µ̃(Bx,d�
)

∫
Bx,d�

F dµ̃ ×�
[

k∏
m=1

(�dm>d�
+ �βm≥β�

�dm=d�
)| d�

]

×�

⎡
⎢⎢⎣

n∏
h=k+1

h �=�

(�dh>d�
+ �βh≥β�

�dh=d�
)| d�

⎤
⎥⎥⎦ ,
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having noticed that

�[F (X1)(�d1<d�
+ �β1<β�

�d1=d�
)|d�] =

∫
Bx,d�

F dµ̃

and

�[�d1<d�
+ �β1<β�

�d1=d�
|d�] = µ̃(Bx,d�

).

Then using the same arguments, we use the reverse transformations:

n∑
�=k+1

�

⎡
⎢⎢⎣

k∑
j=1

1
k

F (Xj)
k∏

j=1

(�dj<d�
+ �βj<β�

�dj=d�
)

n∏
h=k+1

h �=�

(�dh>d�
+ �βh≥β�

�dh=d�
)| d�

⎤
⎥⎥⎦

=
n∑

�=k+1

�

[
1

µ̃(Bx,d�
)

∫
Bx,d�

F dµ̃

×
k∏

m=1

(�dm>d�
+ �βm≥β�

�dm=d�
)

n∏
h=k+1

h �=�

(�dh>d�
+ �βh≥β�

�dh=d�
)| d�

⎤
⎥⎥⎦

= �

⎡
⎣ 1

µ̃(Bx,dQ(k+1)
)

⎛
⎝∫

Bx,dQ(k+1)

F dµ̃

⎞
⎠ �{Q(1),...,Q(k)}={q(1),...,q(k)}| dQ(k+1)

⎤
⎦

= �

⎡
⎣�{Q(1),...,Q(k)}={q(1),...,q(k)}

1
µ̃(Bx,dQ(k+1)

)

∫
Bx,dQ(k+1)

F dµ̃| dQ(k+1)

⎤
⎦ .

We conclude the proof by reordering all the permutations again:

�

⎡
⎣ k∑

j=1

F (X(j))| d(k+1)

⎤
⎦ =

∑
{q(1),...,q(k)}∈Q̃(n,k)

�

⎡
⎣ k∑

j=1

�{Q(1),...,Q(k)}={q(1),...,q(k)}

× 1
µ̃(Bx,dQ(k+1)

)

∫
Bx,dQ(k+1)

F dµ̃| dQ(k+1)

⎤
⎦

=
1

µ̃(Bx,d(k+1))

∫
Bx,d(k+1)

F dµ̃. �

Remark A.2. If the probability µ does not put mass on ball surfaces, the proof is much simpler and the result
of the Lemma is merely

�

⎡
⎣ 1

k

k∑
j=1

F (X(j))| d(k+1)

⎤
⎦ =

1
µ(Bx,d(k+1))

∫
Bx,d(k+1)

F (x′) dµ(x′).



NEAREST NEIGHBOR CLASSIFICATION IN INFINITE DIMENSION 355

This can be seen as a particular case of the following general decorrelation result: if ϕ : �k → � is a test
function, symmetric in all its entries, then

�[ϕ(X(1), . . . , X(k))| d(k+1)] = �[ϕ(Z1, . . . , Zk)| d(k+1)]

with the (Zi)1≤i≤k i.i.d. random variables distributed according to the restriction of µ to the ball Bx,d(k+1) .
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[12] D. Preiss and J. Tǐser, Differentiation of measures on Hilbert spaces, in Measure theory, Oberwolfach 1981 (Oberwolfach,

1981), Springer, Berlin. Lect. Notes Math. 945 (1982) 194–207.
[13] C.J. Stone, Consistent nonparametric regression. Ann. Statist. 5 (1977) 595–645. With discussion and a reply by the author.


