Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Optimal estimation of high-dimensional Gaussian location mixtures

Natalie Doss, Yihong Wu, Pengkun Yang and Harrison H. Zhou
The Annals of Statistics 51 (1) (2023)
https://doi.org/10.1214/22-AOS2207

Optimal estimation and computational limit of low-rank Gaussian mixtures

Zhongyuan Lyu and Dong Xia
The Annals of Statistics 51 (2) (2023)
https://doi.org/10.1214/23-AOS2264

A non-asymptotic approach for model selection via penalization in high-dimensional mixture of experts models

TrungTin Nguyen, Hien Duy Nguyen, Faicel Chamroukhi and Florence Forbes
Electronic Journal of Statistics 16 (2) (2022)
https://doi.org/10.1214/22-EJS2057

SuperMix: Sparse regularization for mixtures

Y. De Castro, S. Gadat, C. Marteau and C. Maugis-Rabusseau
The Annals of Statistics 49 (3) (2021)
https://doi.org/10.1214/20-AOS2022

Parameter recovery in two-component contamination mixtures: The $L^{2}$ strategy

Sébastien Gadat, Jonas Kahn, Clément Marteau and Cathy Maugis-Rabusseau
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 56 (2) (2020)
https://doi.org/10.1214/19-AIHP1007

On the nonparametric maximum likelihood estimator for Gaussian location mixture densities with application to Gaussian denoising

Sujayam Saha and Adityanand Guntuboyina
The Annals of Statistics 48 (2) (2020)
https://doi.org/10.1214/19-AOS1817

A survey of feature selection methods for Gaussian mixture models and hidden Markov models

Stephen Adams and Peter A. Beling
Artificial Intelligence Review 52 (3) 1739 (2019)
https://doi.org/10.1007/s10462-017-9581-3

Block-Diagonal Covariance Selection for High-Dimensional Gaussian Graphical Models

Emilie Devijver and Mélina Gallopin
Journal of the American Statistical Association 113 (521) 306 (2018)
https://doi.org/10.1080/01621459.2016.1247002

Reconstruction of molecular network evolution from cross‐sectional omics data

Mehran Aflakparast, Mathisca C. M. de Gunst and Wessel N. van Wieringen
Biometrical Journal 60 (3) 547 (2018)
https://doi.org/10.1002/bimj.201700102

Joint rank and variable selection for parsimonious estimation in a high-dimensional finite mixture regression model

Emilie Devijver
Journal of Multivariate Analysis 157 1 (2017)
https://doi.org/10.1016/j.jmva.2017.02.006

Detection and feature selection in sparse mixture models

Nicolas Verzelen and Ery Arias-Castro
The Annals of Statistics 45 (5) (2017)
https://doi.org/10.1214/16-AOS1513

Inference in finite state space non parametric Hidden Markov Models and applications

E. Gassiat, A. Cleynen and S. Robin
Statistics and Computing 26 (1-2) 61 (2016)
https://doi.org/10.1007/s11222-014-9523-8

Mixtures of stochastic differential equations with random effects: Application to data clustering

Maud Delattre, Valentine Genon-Catalot and Adeline Samson
Journal of Statistical Planning and Inference 173 109 (2016)
https://doi.org/10.1016/j.jspi.2015.12.003

Estimation and model selection for model-based clustering with the conditional classification likelihood

Jean-Patrick Baudry
Electronic Journal of Statistics 9 (1) (2015)
https://doi.org/10.1214/15-EJS1026

Estimating composite functions by model selection

Yannick Baraud and Lucien Birgé
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 50 (1) (2014)
https://doi.org/10.1214/12-AIHP516

Unsupervised Segmentation of Spectral Images with a Spatialized Gaussian Mixture Model and Model Selection

S.X. Cohen and E. Le Pennec
Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 69 (2) 245 (2014)
https://doi.org/10.2516/ogst/2014013

Bayesian methods for the Shape Invariant Model

Dominique Bontemps and Sébastien Gadat
Electronic Journal of Statistics 8 (1) (2014)
https://doi.org/10.1214/14-EJS933

Mixture of Gaussian regressions model with logistic weights, a penalized maximum likelihood approach

L. Montuelle and E. Le Pennec
Electronic Journal of Statistics 8 (1) (2014)
https://doi.org/10.1214/14-EJS939

Anℓ1-oracle inequality for the Lasso in finite mixture Gaussian regression models

Caroline Meynet
ESAIM: Probability and Statistics 17 650 (2013)
https://doi.org/10.1051/ps/2012016

Clustering and variable selection for categorical multivariate data

Dominique Bontemps and Wilson Toussile
Electronic Journal of Statistics 7 (none) (2013)
https://doi.org/10.1214/13-EJS844

Adaptive density estimation for clustering with Gaussian mixtures

C. Maugis-Rabusseau and B. Michel
ESAIM: Probability and Statistics 17 698 (2013)
https://doi.org/10.1051/ps/2012018

Adaptive Bayesian density estimation with location-scale mixtures

Willem Kruijer, Judith Rousseau and Aad van der Vaart
Electronic Journal of Statistics 4 (none) (2010)
https://doi.org/10.1214/10-EJS584