The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Cathy Maugis , Bertrand Michel
ESAIM: PS, 15 (2011) 41-68
Published online: 2012-01-05
This article has been cited by the following article(s):
31 articles
Fast and consistent algorithm for the latent block model
Vincent Brault and Antoine Channarond Computational Statistics 39 (3) 1621 (2024) https://doi.org/10.1007/s00180-023-01373-1
TrungTin Nguyen, Dung Ngoc Nguyen, Hien Duy Nguyen and Faicel Chamroukhi 14472 234 (2024) https://doi.org/10.1007/978-981-99-8391-9_19
Robust estimation in finite mixture models
Alexandre Lecestre ESAIM: Probability and Statistics 27 402 (2023) https://doi.org/10.1051/ps/2023004
Optimal estimation of high-dimensional Gaussian location mixtures
Natalie Doss, Yihong Wu, Pengkun Yang and Harrison H. Zhou The Annals of Statistics 51 (1) (2023) https://doi.org/10.1214/22-AOS2207
Optimal estimation and computational limit of low-rank Gaussian mixtures
Zhongyuan Lyu and Dong Xia The Annals of Statistics 51 (2) (2023) https://doi.org/10.1214/23-AOS2264
A non-asymptotic approach for model selection via penalization in high-dimensional mixture of experts models
TrungTin Nguyen, Hien Duy Nguyen, Faicel Chamroukhi and Florence Forbes Electronic Journal of Statistics 16 (2) (2022) https://doi.org/10.1214/22-EJS2057
SuperMix: Sparse regularization for mixtures
Y. De Castro, S. Gadat, C. Marteau and C. Maugis-Rabusseau The Annals of Statistics 49 (3) (2021) https://doi.org/10.1214/20-AOS2022
Parameter recovery in two-component contamination mixtures: The $L^{2}$ strategy
Sébastien Gadat, Jonas Kahn, Clément Marteau and Cathy Maugis-Rabusseau Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 56 (2) (2020) https://doi.org/10.1214/19-AIHP1007
On the nonparametric maximum likelihood estimator for Gaussian location mixture densities with application to Gaussian denoising
Sujayam Saha and Adityanand Guntuboyina The Annals of Statistics 48 (2) (2020) https://doi.org/10.1214/19-AOS1817
Judith Abécassis, Fabien Reyal and Jean-Philippe Vert (2019) https://doi.org/10.1101/825778
A survey of feature selection methods for Gaussian mixture models and hidden Markov models
Stephen Adams and Peter A. Beling Artificial Intelligence Review 52 (3) 1739 (2019) https://doi.org/10.1007/s10462-017-9581-3
Block-Diagonal Covariance Selection for High-Dimensional Gaussian Graphical Models
Emilie Devijver and Mélina Gallopin Journal of the American Statistical Association 113 (521) 306 (2018) https://doi.org/10.1080/01621459.2016.1247002
Some theoretical results regarding the polygonal distribution
Hien D. Nguyen and Geoffrey J. McLachlan Communications in Statistics - Theory and Methods 47 (20) 5083 (2018) https://doi.org/10.1080/03610926.2017.1386312
Reconstruction of molecular network evolution from cross‐sectional omics data
Mehran Aflakparast, Mathisca C. M. de Gunst and Wessel N. van Wieringen Biometrical Journal 60 (3) 547 (2018) https://doi.org/10.1002/bimj.201700102
Joint rank and variable selection for parsimonious estimation in a high-dimensional finite mixture regression model
Emilie Devijver Journal of Multivariate Analysis 157 1 (2017) https://doi.org/10.1016/j.jmva.2017.02.006
Detection and feature selection in sparse mixture models
Nicolas Verzelen and Ery Arias-Castro The Annals of Statistics 45 (5) (2017) https://doi.org/10.1214/16-AOS1513
Inference in finite state space non parametric Hidden Markov Models and applications
E. Gassiat, A. Cleynen and S. Robin Statistics and Computing 26 (1-2) 61 (2016) https://doi.org/10.1007/s11222-014-9523-8
Improved Bayesian information criterion for mixture model selection
Arash Mehrjou, Reshad Hosseini and Babak Nadjar Araabi Pattern Recognition Letters 69 22 (2016) https://doi.org/10.1016/j.patrec.2015.10.004
Mixtures of stochastic differential equations with random effects: Application to data clustering
Maud Delattre, Valentine Genon-Catalot and Adeline Samson Journal of Statistical Planning and Inference 173 109 (2016) https://doi.org/10.1016/j.jspi.2015.12.003
Estimation and model selection for model-based clustering with the conditional classification likelihood
Jean-Patrick Baudry Electronic Journal of Statistics 9 (1) (2015) https://doi.org/10.1214/15-EJS1026
Estimating composite functions by model selection
Yannick Baraud and Lucien Birgé Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 50 (1) (2014) https://doi.org/10.1214/12-AIHP516
Unsupervised Segmentation of Spectral Images with a Spatialized Gaussian Mixture Model and Model Selection
S.X. Cohen and E. Le Pennec Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 69 (2) 245 (2014) https://doi.org/10.2516/ogst/2014013
Bayesian methods for the Shape Invariant Model
Dominique Bontemps and Sébastien Gadat Electronic Journal of Statistics 8 (1) (2014) https://doi.org/10.1214/14-EJS933
Mixture of Gaussian regressions model with logistic weights, a penalized maximum likelihood approach
L. Montuelle and E. Le Pennec Electronic Journal of Statistics 8 (1) (2014) https://doi.org/10.1214/14-EJS939
Partition-based conditional density estimation
S. X. Cohen and E. Le Pennec ESAIM: Probability and Statistics 17 672 (2013) https://doi.org/10.1051/ps/2012017
The local geometry of finite mixtures
Elisabeth Gassiat and Ramon van Handel Transactions of the American Mathematical Society 366 (2) 1047 (2013) https://doi.org/10.1090/S0002-9947-2013-06041-2
Anℓ1-oracle inequality for the Lasso in finite mixture Gaussian regression models
Caroline Meynet ESAIM: Probability and Statistics 17 650 (2013) https://doi.org/10.1051/ps/2012016
Clustering and variable selection for categorical multivariate data
Dominique Bontemps and Wilson Toussile Electronic Journal of Statistics 7 (none) (2013) https://doi.org/10.1214/13-EJS844
Adaptive density estimation for clustering with Gaussian mixtures
C. Maugis-Rabusseau and B. Michel ESAIM: Probability and Statistics 17 698 (2013) https://doi.org/10.1051/ps/2012018
Adaptive Bayesian density estimation with location-scale mixtures
Willem Kruijer, Judith Rousseau and Aad van der Vaart Electronic Journal of Statistics 4 (none) (2010) https://doi.org/10.1214/10-EJS584
Comments on: l 1-penalization for mixture regression models
Eustasio del Barrio TEST 19 (2) 276 (2010) https://doi.org/10.1007/s11749-010-0202-6