Open Access
Issue |
ESAIM: PS
Volume 29, 2025
|
|
---|---|---|
Page(s) | 204 - 242 | |
DOI | https://doi.org/10.1051/ps/2025004 | |
Published online | 13 June 2025 |
- J. Taylor and R.J. Tibshirani. Statistical learning and selective inference. Proceedings of the National Academy of Sciences, 112(25):7629-7634, 2015. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- L.L. Gao, J. Bien and D. Witten, Selective inference for hierarchical clustering. J. Am. Statist. Assoc. 119 (2022) 1-11. [Google Scholar]
- D. Lahnemann, J. Köster, E. Szczurek, D.J. McCarthy, S.C. Hicks, M.D. Robinson, C.A. Vallejos, K.R. Campbell, N. Beerenwinkel, A. Mahfouz et al., Eleven grand challenges in single-cell data science. Genome Biol. 21 (2020) 1-35. [CrossRef] [Google Scholar]
- J.M. Zhang, G.M. Kamath and N.T. David, Valid post-clustering differential analysis for single-cell RNA-seq. Cell Syst. 9 (2019) 383-392. [CrossRef] [Google Scholar]
- Y.T. Chen and D.M. Witten, Selective inference for fc-means clustering. J. Mach. Learn. Res. 24 (2023) 1-41. [Google Scholar]
- B. Hivert, D. Agniel, R. Thiebaut and B.P. Hejblum, Post-clustering difference testing: Valid inference and practical considerations with applications to ecological and biological data. Computat. Statist. Data Anal. 193 (2024) 107916. [CrossRef] [Google Scholar]
- A. Neufeld, L.L. Gao, J. Popp, A. Battle and D. Witten, Inference after latent variable estimation for single-cell RNA sequencing data. Biostatistics 25 (2024) 270-287. [Google Scholar]
- A. Neufeld, J. Popp, L.L. Gao, A. Battle and D. Witten, Negative binomial count splitting for single-cell RNA sequencing data. Preprint arXiv:2307.12985 (2023). [Google Scholar]
- A. Dharamshi, A. Neufeld, K. Motwani, L.L. Gao, D. Witten and J. Bien, Generalized data thinning using sufficient statistics. J. Am. Statist. Assoc. (2024) 1-26. [Google Scholar]
- J. Leiner, B. Duan, L. Wasserman and A. Ramdas. Data fission: splitting a single data point. J. Am. Statist. Assoc. (2023) 1-12. [Google Scholar]
- A. Neufeld, A. Dharamshi, L.L. Gao and D. Witten, Data thinning for convolution-closed distributions. J. Mach. Learn. Res. 25 (2024) 1-35. [Google Scholar]
- J.D. Lee, D.L. Sun, Y. Sun and J.E. Taylor, Exact post-selection inference, with application to the lasso. Ann. Statist. 44 (2016) 907-927. [MathSciNet] [Google Scholar]
- R.J. Tibshirani and J. Taylor, The solution path of the generalized lasso. Ann. Statist. 39 (2011) 1335-1371. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Chen, S. Jewell and D. Witten, More powerful selective inference for the graph fused lasso. J. Computat. Graph. Statist. 32 (2023) 577-587. [CrossRef] [PubMed] [Google Scholar]
- S. Hyun, M. G'Sell and R.J. Tibshirani, Exact post-selection inference for the generalized lasso path. Electron. J. Statist. 12 (2018) 1053-1097. [CrossRef] [Google Scholar]
- V.N. Le Duy and I. Takeuchi, More powerful conditional selective inference for generalized lasso by parametric programming. J. Mach. Learn. Res. 23 (2022) 1-37. [Google Scholar]
- T.D. Hocking, A. Joulin, F. Bach and J.-P. Vert, Clusterpath an algorithm for clustering using convex fusion Penalties, in 28th International Conference on Machine Learning (2011). [Google Scholar]
- F. Lindsten, H. Ohlsson and L. Ljung, Clustering using sum-of-norms regularization: With application to particle filter output computation, in 2011 IEEE Statistical Signal Processing Workshop (SSP). IEEE (2011) 201-204. [CrossRef] [Google Scholar]
- K. Pelckmans, J. De Brabanter, J.A. Suykens and B. De Moor, Convex clustering shrinkage, in PASCAL Workshop on Statistics and Optimization of Clustering (2005). [Google Scholar]
- E.C. Chi and K. Lange, Splitting methods for convex clustering. J. Computat. Graph. Statist. 24 (2015) 994-1013. [CrossRef] [PubMed] [Google Scholar]
- D. Sun, K.-C. Toh and Y. Yuan, Convex clustering: model, theoretical guarantee and efficient algorithm. J. Mach. Learn. Res. 22 (2021) 1-32. [Google Scholar]
- B. Wang, Y. Zhang, W.W. Sun and Y. Fang, Sparse convex clustering. J. Computat. Graph. Statist. 27 (2018) 393-403. [CrossRef] [Google Scholar]
- M. Weylandt, J. Nagorski and G.I. Allen, Dynamic visualization and fast computation for convex clustering via algorithmic regularization. J. Computat. Graph. Statist. 29 (2020) 87-96. [CrossRef] [PubMed] [Google Scholar]
- X. Zhou, C. Du and X. Cai, An efficient smoothing proximal gradient algorithm for convex clustering. Preprint arXiv:2006.12592 (2020). [Google Scholar]
- F. Bachoc, D. Preinerstorfer and L. Steinberger, Uniformly valid confidence intervals post-model-selection. Ann. Statist. Ann. Statist. 48 (2020) 440-463. [Google Scholar]
- R. Berk, L. Brown, A. Buja, K. Zhang and L. Zhao, Valid post-selection inference. Ann. Statist. 41 (2013) 802-837. [CrossRef] [MathSciNet] [Google Scholar]
- R.J. Tibshirani, A. Rinaldo, R. Tibshirani and L. Wasserman, Uniform asymptotic inference and the bootstrap after model selection. Ann. Statist. 46 (2018) 1255-1287. [CrossRef] [MathSciNet] [Google Scholar]
- A.K. Kuchibhotla, L.D. Brown, A. Buja, J. Cai, E.I. George and L.H. Zhao, Valid post-selection inference in model-free linear regression. Ann. Statist. 48 (2020). [CrossRef] [Google Scholar]
- K.M. Tan and D. Witten, Statistical properties of convex clustering. Electron. J. Statist. 9 (2015) 2324. [Google Scholar]
- H. Hoefling, A path algorithm for the fused lasso signal approximator. J. Computat. Graph. Statist. 19 (2010) 984-1006. [CrossRef] [Google Scholar]
- F. Murtagh and P. Contreras, Algorithms for hierarchical clustering: an overview. Wiley Interdiscip. Rev. Data Mining Knowledge Discov. 2 (2012) 86-97. [CrossRef] [Google Scholar]
- A. Gionis, H. Mannila and P. Tsaparas, Clustering aggregation. ACM Trans. Knowledge Discov. Data 1 (2007) 4-es. [CrossRef] [Google Scholar]
- N. Nguyen and R. Caruana, Consensus clusterings, in Seventh IEEE International Conference on Data Mining (ICDM 2007) (2007) 607-612. [CrossRef] [Google Scholar]
- X. Wang, C. Yang and J. Zhou, Clustering aggregation by probability accumulation. Pattern Recogn. 42 (2009) 668-675. [CrossRef] [Google Scholar]
- S. Panigrahi and J. Taylor, Approximate selective inference via maximum likelihood. J. Am. Statist. Assoc. 118 (2022) 1-11. [Google Scholar]
- P. Heinrich and J. Kahn, Strong identifiability and optimal minimax rates for finite mixture estimation. Ann. Statist. 46 (2018) 2844-2870. [CrossRef] [MathSciNet] [Google Scholar]
- B. Laurent, C. Marteau and C. Maugis-Rabusseau, Non-asymptotic detection of two-component mixtures with unknown means. Bernoulli 22 (2016) 242-274. [CrossRef] [MathSciNet] [Google Scholar]
- G.J. McLachlan, S.X. Lee and S.I. Rathnayake, Finite mixture models. Annu. Rev. Statist. Appl. 6 (2019) 355-378. [CrossRef] [Google Scholar]
- X. Nguyen, Convergence of latent mixing measures in finite and infinite mixture models. Ann. Statist. 41 (2013) 370. [CrossRef] [MathSciNet] [Google Scholar]
- F. Bachoc, H. Leeb and B.M. Potscher, Valid confidence intervals for post-model-selection predictors. Ann. Statist. 47 (2019) 1475-1504. [CrossRef] [MathSciNet] [Google Scholar]
- A. Buja, L. Brown, R. Berk, E. George, E. Pitkin, M. Traskin, K. Zhang and L. Zhao, Models as approximations I: Consequences illustrated with linear regression. Statist. Sci. 34 (2019) 523-544. [MathSciNet] [Google Scholar]
- Y.-J. Yun and R. Foygel Barber, Selective inference for clustering with unknown variance. Electron. J. Statist. 17 (2023) 1923-1946. [Google Scholar]
- B. Hivert, D. Agniel, R. Thiebaut and B.P. Hejblum, Running in circles: is practical application feasible for data fission and data thinning in post-clustering differential analysis? Preprint arXiv:2405.13591 (2024). [Google Scholar]
- J.W.J. Williams, Algorithm 232: heapsort. Commun. ACM 7 (1964) 347-348. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.