Open Access
Issue |
ESAIM: PS
Volume 29, 2025
|
|
---|---|---|
Page(s) | 324 - 356 | |
DOI | https://doi.org/10.1051/ps/2025006 | |
Published online | 18 July 2025 |
- K. Kuwada, Duality on gradient estimates and Wasserstein controls. J. Funct. Anal. 258 (2010) 3758-3774. [Google Scholar]
- F.-Y. Wang, Analysis for diffusion processes on Riemannian manifolds. Vol. 18 of Advanced Series on Statistical Science & Applied Probability. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2014). [Google Scholar]
- M. Cranston, A probabilistic approach to gradient estimates. Canad. Math. Bull. 35 (1992) 46-55. [Google Scholar]
- M. Cranston, Gradient estimates on manifolds using coupling. J. Funct. Anal. 99 (1991) 110-124. [Google Scholar]
- W.S. Kendall, Nonnegative Ricci curvature and the Brownian coupling property. Stochastics 19 (1986) 111-129. [Google Scholar]
- M.N. Pascu and I. Popescu, Couplings of Brownian motions of deterministic distance in model spaces of constant curvature. J. Theoret. Probab. 31 (2018) 2005-2031. [Google Scholar]
- G. Ben Arous, M. Cranston and W.S. Kendall, Coupling constructions for hypoelliptic diffusions: two examples, in Stochastic Analysis (Ithaca, NY, 1993), Vol. 57 of Proc. Sympos. Pure Math.. American Mathematical Society, Providence, RI (1995) 193-212. [Google Scholar]
- F. Baudoin, M. Gordina and P. Mariano, Gradient bounds for Kolmogorov type diffusions. Ann. Inst. Henri Poincare Probab. Stat. 56 (2020) 612-636. [Google Scholar]
- W.S. Kendall, Coupling time distribution asymptotics for some couplings of the Levy stochastic area, in Probability and Mathematical Genetics. V. 378 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2010) 446-463. [Google Scholar]
- W.S. Kendall, Brownian couplings, convexity, and shy-ness. Electron. Commun. Probab. 14 (2009) 66-80. [Google Scholar]
- W.S. Kendall, Coupling all the Levy stochastic areas of multidimensional Brownian motion. Ann. Probab. 35 (2007) 935-953. [Google Scholar]
- S. Banerjee, M. Gordina and P. Mariano, Coupling in the Heisenberg group and its applications to gradient estimates. Ann. Probab. 46 (2018) 3275-3312. [Google Scholar]
- M. Bonnefont and N. Juillet, Couplings in Lp distance of two Brownian motions and their Levy area. Ann. Inst. Henri Poincare Probab. Stat. 56 (2020) 543-565. [Google Scholar]
- S. Banerjee and W. Kendall, Coupling polynomial Stratonovich integrals: the two-dimensional Brownian case. Electron. J. Probab. 23 (2018) Paper No. 24, 43. [Google Scholar]
- L. Luo and R.W. Neel, Non-Markovian maximal couplings and a vertical reflection principle on a class of sub- Riemannian manifolds. Trans. Amer. Math. Soc. (2024), https://arxiv.org/abs/2402.13976. [Google Scholar]
- M. Benefice, Couplings of Brownian motions on SU(2) and SL(2, R). Stochastic Process. Appl. 176 (2024) 104434. [Google Scholar]
- M. Benefice, Non co-adapted couplings of Brownian motions on subRiemannian manifolds. Linear Algebra and its Applications (2023), https://arxiv.org/abs/2312.14512. [Google Scholar]
- S. Asmussen, Applied probability and queues. Vol. 51 of Applications of Mathematics (New York), 2nd edn. Springer Verlag, New York (2003). Stochastic Modelling and Applied Probability. [Google Scholar]
- K. Kuwada, On uniqueness of maximal coupling for diffusion processes with a reflection. J. Theoret. Probab. 20 (2007) 935-957. [Google Scholar]
- E.P. Hsu and K.-T. Sturm, Maximal coupling of Euclidean Brownian motions. Commun. Math. Stat. 1 (2013) 93-104. [Google Scholar]
- M.Yu. Sverchkov and S.N. Smirnov, Maximal coupling for processes in D [0, ∞]. Dokl. Akad. Nauk SSSR 311 (1990) 1059-1061. [Google Scholar]
- S. Banerjee and W.S. Kendall, Coupling the Kolmogorov diffusion: maximality and efficiency considerations. Adv. Appl. Probab. 48 (2016) 15-35. [Google Scholar]
- F. Baudoin, M. Gordina and P. Mariano, On the Cheng-yau gradient estimate for Carnot groups and sub-Riemannian manifolds. Proc. Am. Math. Soc. 147 (2019) 3181-3189. [Google Scholar]
- M. Arnaudon, M. Benefice, M. Bonnefont and D. Feral, A coupling strategy for Brownian motions at fixed time on Carnot groups using Legendre expansion. Electronic Journal of Probability, Electron. J. Probab. 30 (2025) 1-32. [Google Scholar]
- A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin (2007). [Google Scholar]
- A. Agrachev, D. Barilari and U. Boscain, A comprehensive introduction to sub-Riemannian geometry. Vol. 181 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2020). From the Hamiltonian viewpoint, With an appendix by Igor Zelenko. [Google Scholar]
- R.J. Muirhead, Aspects of multivariate statistical theory. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York (1982). [Google Scholar]
- Z. Zhang, Pseudo-inverse multivariate/matrix-variate distributions. J. Multivariate Anal. 98 (2007) 1684-1692. [Google Scholar]
- H. Neudecker and S. Liu, The density of the Moore-Penrose inverse of a random matrix. Linear Algebra Appl. 237/238 (1996) 123-126. Special issue honoring Calyampudi Radhakrishna Rao. [Google Scholar]
- J. Pielaszkiewicz and T. Holgersson, Mixtures of traces of Wishart and inverse Wishart matrices. Commun. Statist. Theory Methods 50 (2021) 5084-5100. [Google Scholar]
- E. Le Donne, A. Pinamonti and G. Speight, Universal differentiability sets and maximal directional derivatives in Carnot groups. J. Math. Pures Appl. 121 (2019) 83-112. [Google Scholar]
- Y.-F. Ren, On the Burkholder-Davis-Gundy inequalities for continuous martingales. Statist. Probab. Lett. 78 (2008) 3034-3039. [Google Scholar]
- Y. Huang and S. Sun, Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds. Front. Math. China 15 (2020) 91-114. [Google Scholar]
- P. Hajlasz and P. Koskela, Sobolev met Poincare. Mem. Am. Math. Soc. 145 (2000) x+101. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.