Open Access
Issue
ESAIM: PS
Volume 29, 2025
Page(s) 281 - 301
DOI https://doi.org/10.1051/ps/2025008
Published online 24 June 2025
  1. E. Löcherbach, D. Loukianova and E. Marini, Strong propagation of chaos for systems of interacting particles with nearly stable jumps. Electronic J. Probab. (2025) in press. [Google Scholar]
  2. L. Andreis, P. Dai Pra and M. Fischer, McKeanVlasov limit for interacting systems with simultaneous jumps. Stoch. Anal. Appl. 36 (2018) 960-995. [Google Scholar]
  3. T. Cavallazzi, Quantitative weak propagation of chaos for stable-driven McKean-Vlasov SDEs. ArXiv https://arxiv.org/abs/2212.01079 (2022) To appear in Ann. IHP. [Google Scholar]
  4. A. De Masi, A. Galves, E. Locherbach and E. Presutti, Hydrodynamic limit for interacting neurons. J. Statist. Phys. 158 (2015) 866-902. [Google Scholar]
  5. B. Jourdain, S. Meleard and W. Woyczynski, Nonlinear SDEs driven by Levy processes and related PDEs. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2007) 1-29. [Google Scholar]
  6. C. Graham, McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets. Stoch. Processes Appl. 40 (1992) 69-82. [Google Scholar]
  7. R. Carmona, F. Delarue and D. Lacker, Mean field games with common noise. Ann. Probab. 44 (2016) 3740-3803. [MathSciNet] [Google Scholar]
  8. M. Coghi and F. Flandoli, Propagation of chaos for interacting particles subject to environmental noise. Ann. Appl. Probab. 26 (2016) 1407-1442. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Dermoune, Propagation and conditional propagation of chaos for pressureless gas equations. Probab. Theory Related Fields 126 (2003) 459-476. [Google Scholar]
  10. X. Erny, E. Löcherbach and D. Loukianova, Conditional propagation of chaos for mean field systems of interacting neurons. Electron. J. Probab. 26 (2021) 1-25. [CrossRef] [MathSciNet] [Google Scholar]
  11. X. Erny, E. Locherbach and D. Loukianova, Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling. Ann. Appl. Probab. 33 (2023) 3563-3586. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Villani, Optimal Transport, Old and New. Springer Berlin, Heidelberg (2009). [Google Scholar]
  13. B. Jourdain and A. Tse, Central limit theorem over non-linear functionals of empirical measures with applications to the mean-field fluctuation of interacting diffusions. Electron. J. Probab. 26 (2021) 1-34. [CrossRef] [MathSciNet] [Google Scholar]
  14. N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162 (2015) 707-738. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.