Open Access
Issue
ESAIM: PS
Volume 29, 2025
Page(s) 1 - 44
DOI https://doi.org/10.1051/ps/2024012
Published online 03 January 2025
  1. V. Strassen, The existence of probability measures with given marginals. Ann. Math. Statist. 36 (1965) 423–439. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Jourdain and W. Margheriti, Martingale Wasserstein inequality for probability measures in the convex order. Bernoulli 28 (2022) 830–858. [CrossRef] [MathSciNet] [Google Scholar]
  3. B. Jourdain and K. Shao, Maximal Martingale Wasserstein inequality. Electron. Commun. Probab. 29 (2024) 1–8. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Hobson and A. Neuberger, Robust Bounds for Forward Start Options. Math. Finance 22 (2012) 31–56. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Beiglböck and N. Juillet, On a problem of optimal transport under marginal martingale constraints. Ann. Probab. 44 (2016) 42–106. [MathSciNet] [Google Scholar]
  6. D. Hobson and M. Klimmek, Robust price bounds for the forward starting straddle. Finance Stochast. 19 (2015) 189–214. [CrossRef] [Google Scholar]
  7. M. Huesmann and F. Stebegg, Monotonicity preserving transformations of MOT and SEP. Stochast. Process. Appl. 128 (2018) 1114–1134. [CrossRef] [Google Scholar]
  8. M. Beiglböck, A.M.G. Cox and M. Huesmann, Optimal transport and Skorokhod embedding. Invent. Math. 208 (2017) 327–400. [CrossRef] [MathSciNet] [Google Scholar]
  9. R.P. Kertz and U. Rösler, Complete lattices of probability measures with applications to martingale theory, in Game theory, optimal stopping, probability and statistics. Vol. 35 of IMS Lecture Notes Monogr. Ser. Inst. Math. Statist., Beachwood, OH (2000) 153–177. [Google Scholar]
  10. D. Baker, Martingales with specified marginals. Thèse, Université Pierre et Marie Curie - Paris VI, 2012. [Google Scholar]
  11. S. Diamond and S. Boyd, CVXPY: a Python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17 (2016) 1–5. [Google Scholar]
  12. P. Henry-Labordère and N. Touzi, An explicit martingale version of the one-dimensional Brenier theorem. Finance Stochast. 20 (2016) 635–668. [CrossRef] [Google Scholar]
  13. M. Shaked and G. Shanthikumar, Stochastic Orders. Springer Series in Statistics. Springer-Verlag, New York (2007). [CrossRef] [Google Scholar]
  14. M. Beiglböck, P. Henry-Labordère and F. Penkner, Model-independent bounds for option prices: a mass transport approach. Finance Stochast. 17 (2013) 477–501. [CrossRef] [Google Scholar]
  15. M. Marcus and V.J. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45 (1972) 294–320. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. Jourdain and W. Margheriti, A new family of one dimensional martingale couplings. Electron. J. Probab. 25 (2020). [CrossRef] [Google Scholar]
  17. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenschaften, 3rd edn. Springer-Verlag, Berlin Heidelberg (1999). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.