Open Access
Issue
ESAIM: PS
Volume 28, 2024
Page(s) 22 - 45
DOI https://doi.org/10.1051/ps/2023021
Published online 12 January 2024
  1. K.J. Arrow, L. Hurwicz, H. Uzawa and H.B. Chenery. Studies in Linear and Non-linear Programming, Vol. 2. Stanford University Press (1958). [Google Scholar]
  2. N. Bäuerle and U. Rieder, Optimal control of piecewise deterministic Markov processes with finite time horizon. In Modern Trends in Controlled Stochastic Processes: Theory and Applications (2010) 123–143. [Google Scholar]
  3. H. Brezis and H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Vol. 2. Springer (2011). [CrossRef] [Google Scholar]
  4. A. Bušić and S. Meyn, Distributed control of thermostatically controlled loads: Kullback–Leibler optimal control in continuous time, in 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE (2019) 7258–7265. [Google Scholar]
  5. R. Carmona and F. Delarue, Forward–backward stochastic differential equations and controlled Mckean–Vlasov dynamics. Ann. Probab. 43 (2015) 2647–2700. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Carnevale, A. Camisa and G. Notarstefano, Distributed online aggregative optimization for dynamic multi-robot coordination. IEEE Trans. Automatic Control 66 (2022) 3736–3743. [Google Scholar]
  7. P. Carpentier, J.-Ph. Chancelier, V. Leclère and F. Pacaud, Stochastic decomposition applied to large-scale hydro valleys management. Eur. J. Oper. Res. 270 (2018) 1086–1098. [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Cocozza-Thivent, R. Eymard, S. Mercier and M. Roussignol, Characterization of the marginal distributions of Markov processes used in dynamic reliability. J. Appl. Math. Stochastic Anal. (2006). [Google Scholar]
  9. O.L.V. Costa, F. Dufour and A.B. Piunovskiy, Constrained and unconstrained optimal discounted control of piecewise deterministic Markov processes. SIAM J. Control Optim. 54 (2016) 1444–1474. [CrossRef] [MathSciNet] [Google Scholar]
  10. M.H.A. Davis, Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. Roy. Stat. Soc. Ser. B (Methodol.) 46 (1984) 353–376. [Google Scholar]
  11. B. De Saporta, F. Dufour and A. Geeraert, Optimal strategies for impulse control of piecewise deterministic Markov processes. Automatica 77 (2017) 219–229. [CrossRef] [Google Scholar]
  12. B. De Saporta and H. Zhang, Predictive maintenance for the heated hold-up tank. Reliabil. Eng. Syst. Saf. 115 (2013) 82–90. [CrossRef] [Google Scholar]
  13. A. Durmus, A. Guillin and P. Monmarché, Piecewise deterministic Markov processes and their invariant Measures. in Ann. Inst. Henri Poincaré Probab. Stat. 57 (2021) 1442–1475. [CrossRef] [MathSciNet] [Google Scholar]
  14. I. Ekeland and R. Temam, Convex Analysis and Variational Problems. SIAM (1999). [Google Scholar]
  15. Fastned Support, Qu’est-ce qui détermine la vitesse de recharge? https://support.fastned.nl/hc/fr/articles/205694717-Qu-est-ce-qui-d%C3%A9termine-la-vitesse-de-recharge-, 2020. [Google Scholar]
  16. C. Geiersbach and G.Ch. Pflug, Projected stochastic gradients for convex constrained problems in Hilbert spaces. SIAM J. Optim. 29 (2019) 2079–2099. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis. Springer Science & Business Media (2004). [Google Scholar]
  18. Y. Huang and X. Guo, Finite-horizon piecewise deterministic Markov decision processes with unbounded transition rates. Stochastics 91 (2019) 67–95. [CrossRef] [MathSciNet] [Google Scholar]
  19. P. Jacquot, O. Beaude, P. Benchimol, S. Gaubert and N. Oudjane, A privacy-preserving disaggregation algorithm for non-intrusive management of flexible energy, in 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE (2019) 890–896. [CrossRef] [Google Scholar]
  20. C. Le Floch, E.C. Kara and S. Moura, PDE modeling and control of electric vehicle fleets for ancillary services: a discrete charging case. IEEE Trans. Smart Grid 9 (2016) 573–581. [Google Scholar]
  21. M.-F. Leung, J. Wang and D. Li, Decentralized robust portfolio optimization based on cooperative-competitive multiagent systems. IEEE Trans. Cybernet. 52 (2021) 12785–12794. [Google Scholar]
  22. Y.T. Lin and N. E. Buchler. Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic Markov processes. J. Royal Society Interface 15 (2018) 20170804. [CrossRef] [PubMed] [Google Scholar]
  23. Y.-F. Liu and Y.-H. Dai, On the complexity of joint subcarrier and power allocation for multi-user OFDMA systems. IEEE Trans. Signal Process. 62 (2013) 583–596. [Google Scholar]
  24. M.V.F. Pereira and L.M.V.G. Pinto, Multi-stage stochastic optimization applied to energy planning. Math. Program. 52 (1991) 359–375. [CrossRef] [Google Scholar]
  25. R.T. Rockafellar and R.J.-B. Wets, Variational Analysis, Vol. 317. Springer Science & Business Media (2009). [Google Scholar]
  26. R. Rudnicki and M. Tyran-Kamińska, Piecewise Deterministic Markov Processes in biological models, in Semigroups of Operators – Theory and Applications. Springer (2015) 235–255. [CrossRef] [Google Scholar]
  27. A. Séguret, An optimal control problem for the continuity equation arising in smart charging. J. Math. Anal. Appl. (2023) 127891. [Google Scholar]
  28. A. Séguret, C. Alasseur, J.F. Bonnans, A. De Paola, N. Oudjane and V. Trovato, Decomposition of high dimensional aggregative stochastic control problems. arXiv preprint arXiv:2008.09827, 2020. [Google Scholar]
  29. A. Séguret, C. Wan and C. Alasseur, A mean field control approach for smart charging with aggregate power demand constraints, in 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). IEEE (2021) 01–05. [Google Scholar]
  30. S.R. Sinsel, R.L. Riemke and V.H. Hoffmann, Challenges and solution technologies for the integration of variable renewable energy sources – a review. Renewable Energy 145 (2020) 2271–2285. [CrossRef] [Google Scholar]
  31. D. Verms, Optimal control of piecewise deterministic Markov process. Stochastics 14 (1985) 165–207. [CrossRef] [MathSciNet] [Google Scholar]
  32. H. Zhang, B. De Saporta, F. Dufour and G. Deleuze, Dynamic reliability by using simulink and stateflow. Chem. Eng. Trans. 33 (2013) 529–534. [Google Scholar]
  33. H. Zhang, F. Innal, F. Dufour and Y. Dutuit, Piecewise deterministic Markov processes based approach applied to an offshore oil production system. Reliabil. Eng. Syst. Saf. 126 (2014) 126–134. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.