Open Access
Volume 28, 2024
Page(s) 62 - 74
Published online 15 March 2024
  1. A.N. Shiryaev, Stochastic Disorder Problems. Springer, Berlin (2019). [CrossRef] [Google Scholar]
  2. M. Jeanblanc and S. Song, Default times with given survival probability and their F-martingale decomposition formula. Stochastic Processes Appl. 121 (2011) 1389–1410. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Aksamit and M. Jeanblanc, Enlargement of Filtration with Finance in View. Springer (2017). [CrossRef] [Google Scholar]
  4. N. El Karoui, M. Jeanblanc, Y. Jiao and B. Zargari, Conditional default probability and density, in Inspired by Finance, edited by Yu. Kabanov, M. Rutkowski and Th. Zariphopoulou. Springer (2014) 201–219. [Google Scholar]
  5. M. Jeanblanc and S. Song, Explicit model of default time with given survival probability. Stochastic Processes Applic. 121 (2011) 1678–704. [CrossRef] [Google Scholar]
  6. P.V. Gapeev, M. Jeanblanc, L. Li and M. Rutkowski, Constructing random times with given survival process and applications to valuation of credit derivatives, in Contemporary Quantitative Finance, edited by C. Chiarella and A. Novikov. Springer (2010) 255–280. [CrossRef] [Google Scholar]
  7. J. Jacod, Grossissement initial, hypothèse (H') et théorème de Girsanov. Lecture Notes Math. 1118 (1985) 15–35. [CrossRef] [Google Scholar]
  8. A. Grorud and M. Pontier, Insider trading in a continuous time market model. Int. J. Theor. Appl. Finance 1 (1998) 331–347. [CrossRef] [Google Scholar]
  9. J. Amendinger, Martingale representation theorems for initially enlarged filtrations. Stochast. Processes Applic. 89 (2000) 101–116. [CrossRef] [Google Scholar]
  10. M. Jeanblanc and S. Song, Martingale representation property in progressively enlarged filtrations. Stochastic Processes Applic. 125 (2015) 4242–4271. [CrossRef] [Google Scholar]
  11. C. Fontana, The strong predictable representation property in initially enlarged filtrations under the density hypothesis. Stochastic Processes Applic. 128 (2018) 1007–1033. [CrossRef] [Google Scholar]
  12. T.R. Bielecki, J. Jakubowski, M. Jeanblanc and M. Niewkegłowski, Special semimartingales and shrinkage of filtration. Ann. Appl. Probab. 31 (2021) 1376–1402. [CrossRef] [MathSciNet] [Google Scholar]
  13. P.V. Gapeev, M. Jeanblanc and D. Wu, Projections of martingales in enlargements of Brownian filtrations under Jacod’s equivalence hypothesis. Electron. J. Probab. 26 (2021) 1–24. [CrossRef] [MathSciNet] [Google Scholar]
  14. P.V. Gapeev, M. Jeanblanc and D. Wu, Projections of martingales in enlargements of filtrations under Jacod’s equivalence hypothesis for marked point processes. Preprint, hal-04376352 (2024). [Google Scholar]
  15. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. 3rd edn. Springer, Berlin (1999). [CrossRef] [Google Scholar]
  16. R.S. Liptser and A.N. Shiryaev, Statistics of Random Processes I., 2nd edn. (first edn. 1977). Springer, Berlin (2001). [Google Scholar]
  17. Y. Ouknine and M. Rutkowski, Strong comparison of solutions of one-dimensional stochastic differential equations. Stochastic Processes Applic. 36 (1990) 217–230. [CrossRef] [Google Scholar]
  18. G. Ferreyra and P. Sundar, Comparison of solutions of stochastic differential eqations and applications. Stochastic Anal. Applic. 18 (2000) 211–229. [CrossRef] [Google Scholar]
  19. A.N. Shiryaev, Statistical Sequential Analysis. American Mathematical Society, Providence (1973). [Google Scholar]
  20. A.N. Shiryaev, Optimal Stopping Rules. Springer, Berlin (1978) 26. [Google Scholar]
  21. G. Peskir and A.N. Shiryaev, Optimal Stopping and Free-Boundary Problems. Birkhäuser, Basel (2006). [Google Scholar]
  22. P.V. Gapeev and G. Peskir, The Wiener disorder problem with finite horizon. Stochastic Processes Applic. 116 (2006) 1770–1791. [CrossRef] [Google Scholar]
  23. P.V. Gapeev and A.N. Shiryaev, Bayesian quickest detection problems for some diffusion processes. Adv. Appl. Probab. 45 (2013) 164–185. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Aksamit, Random Times, Enlargement of Filtration and Arbitrages. PhD thesis, Université d’Evry (2014). [Google Scholar]
  25. M. Jeanblanc, M. Yor and M. Chesney, Martingale Methods for Financial Markets. Springer, Berlin (2007). [Google Scholar]
  26. L. Li and M. Rutkowski, Random times and multiplicative systems. Stochastic Processes Applic. 122 (2012) 2053–2077. [CrossRef] [Google Scholar]
  27. J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes. Springer, Berlin (1987). [CrossRef] [Google Scholar]
  28. P.V. Gapeev, The disorder problem for compound Poisson processes with exponential jumps. Ann. Appł. Probab. 15 (2005) 487–499. [MathSciNet] [Google Scholar]
  29. S. Dayanik and S.O. Sezer, Compound Poisson disorder problem. Math. Oper. Res. 31 (2006) 649–672. [CrossRef] [MathSciNet] [Google Scholar]
  30. S. Dayanik, Compound Poisson disorder problems with nonlinear detection delay penalty cost functions. Sequential Anał. 29 (2010) 193–216. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.