Open Access
Volume 27, 2023
Page(s) 515 - 557
Published online 28 April 2023
  1. D. Aldous and P. Diaconis, Shuffling cards and stopping times. Am. Math. Monthly 93 (1986) 333–348. [CrossRef] [MathSciNet] [Google Scholar]
  2. E. Breuillard and P.P. Varjú, Cut-off phenomenon for the ax + b Markov chain over a finite field, 2019. [Google Scholar]
  3. D. Bump, P. Diaconis, A. Hicks, L. Miclo and H. Widom, An exercise(?) in Fourier analysis on the Heisenberg group. Ann. Fac. Sci. Toulouse Math. 26 (2017) 263–288. [Google Scholar]
  4. D. Bump, P. Diaconis, A. Hicks, L. Miclo and H. Widom, Useful bounds on the extreme eigenvalues and vectors of matrices for Harper’s operators. in Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics. Vol. 259 of Oper. Theory Adv. Appl. Birkhäuser/Springer, Cham (2017), 235–265. [Google Scholar]
  5. S. Chatterjee and P. Diaconis, Speeding up Markov chains with deterministic jumps, arXiv preprint 2004.11491. April 2020. [Google Scholar]
  6. R. Chhaibi, July 2021. [Google Scholar]
  7. P. Diaconis and J.A. Fill, Strong stationary times via a new form of duality. Ann. Probab. 18 (1990) 1483–1522. [Google Scholar]
  8. P. Diaconis and L. Miclo, On times to quasi-stationarity for birth and death processes. J. Theoret. Probab. 22 (2009) 558–586. [Google Scholar]
  9. S. Eberhard and P.P. Varjuú, Mixing time of the Chung-Diaconis-Graham random process, 2020. [Google Scholar]
  10. J.A. Fill, The passage time distribution for a birth-and-death chain: strong stationary duality gives a first stochastic proof. J. Theoret. Probab. 22 (2009) 543–557. [Google Scholar]
  11. J. Hermon and S. Thomas, Random Cayley graphs I: cutoff and geometry for Heisenberg groups, 2019. [Google Scholar]
  12. L. Hörmander, Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147–171. [Google Scholar]
  13. S. Karlin and J. McGregor, Coincidence properties of birth and death processes. Pacific J. Math. 9 (1959) 1109–1140. [Google Scholar]
  14. D.A. Levin, Y. Peres and E.L. Wilmer, Markov Chains and Mixing Times. American Mathematical Society, Providence, RI (2009). [Google Scholar]
  15. L. Miclo, Remarques sur l’hypercontractivité et l'évolution de l’entropie pour des chaînes de Markov finies. in Séminaire de Probabilitées, XXXI. Vol, 1655 of Lecture Notes in Math.. Springer, Berlin (1997), 136–167. [Google Scholar]
  16. L. Miclo, Duality and hypoellipticity: one-dimensional case studies. Electron. J. Probab. 22 (2017) 32 [Google Scholar]
  17. L. Miclo, On the construction of measure-valued dual processes. Electron. J. Probab. 25 (2020) 1–64. [Google Scholar]
  18. E. Nestoridi and A. Sly, arXiv preprint 2012.08731. December 2020. [Google Scholar]
  19. I. Pak, Random Walks on Groups: Strong Uniform Time Approach. PhD Thesis, Harvard University. ProQuest LLC, Ann Arbor, MI (1997). [Google Scholar]
  20. J.W. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7 (1975) 511–526. [Google Scholar]
  21. J.G. Propp and D.B. Wilson, Exact sampling with coupled Markov chains and applications to statistical mechanics. in Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995), Vol. 9, (1996) 223–252. [CrossRef] [Google Scholar]
  22. L. Saloff-Coste, Random walks on finite groups, in Probability on Discrete Structures. Vol. 110 of Encyclopaedia Math. Sci. Springer, Berlin (2004) 263–346. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.