Open Access
Issue
ESAIM: PS
Volume 27, 2023
Page(s) 841 - 866
DOI https://doi.org/10.1051/ps/2023017
Published online 17 October 2023
  1. A. Abdulle, I. Almuslimani and G. Vilmart, Optimal explicit stabilized integrator of weak order 1 for stiff and ergodic stochastic differential equations. SIAM/ASA J. Uncertain. Quantif. 6 (2018) 937–964. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Abdulle, G. Vilmart and K.C. Zygalakis, High order numerical approximation of the invariant measure of ergodic SDEs. SIAM J. Numer. Anal. 52 (2014) 1600–1622. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Angeli, D. Crisan and M. Ottobre, Uniform in time convergence of numerical schemes for stochastic differential equations via strong exponential stability: Euler methods, split-step and tamed schemes. Preprint, 2023. [Google Scholar]
  4. N. Bou-Rabee and E. Vanden-Eijnden, Pathwise accuracy and ergodicity of metropolized integrators for SDEs. Commun. Pure Appl. Math. 63 (2010) 655–696. [Google Scholar]
  5. C.-E. Bréhier, Approximation of the invariant distribution for a class of ergodic SPDEs using an explicit tamed exponential Euler scheme. ESAIM Math. Model. Numer. Anal. 56 (2022) 151–175. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. S. Cerrai, Second order PDE’s in finite and infinite dimension. Vol. 1762 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2001). [CrossRef] [Google Scholar]
  7. D. Crisan, P. Dobson and M. Ottobre, Uniform in time estimates for the weak error of the Euler method for SDEs and a pathwise approach to derivative estimates for diffusion semigroups. Trans. Am. Math. Soc. 374 (2021) 3289–3330. [CrossRef] [Google Scholar]
  8. M. Hutzenthaler and A. Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Am. Math. Soc. 236 (2015) v+99. [Google Scholar]
  9. M. Hutzenthaler, A. Jentzen and P.E. Kloeden, Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011) 1563–1576. [MathSciNet] [Google Scholar]
  10. M. Hutzenthaler, A. Jentzen and P.E. Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22 (2012) 1611–1641. [MathSciNet] [Google Scholar]
  11. C. Kelly and G. J. Lord, Adaptive time-stepping strategies for nonlinear stochastic systems. IMA J. Numer. Anal. 38 (2018) 1523–1549. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Kopec, Weak backward error analysis for overdamped Langevin processes. IMA J. Numer. Anal. 35 (2015) 583–614. [CrossRef] [MathSciNet] [Google Scholar]
  13. D. Lamberton and G. Pagès, Recursive computation of the invariant distribution of a diffusion. Bernoulli 8 (2002) 367–405. [MathSciNet] [Google Scholar]
  14. A. Laurent and G. Vilmart, Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs. Math. Comp. 89 (2020) 169–202. [Google Scholar]
  15. B. Leimkuhler, C. Matthews and G. Stoltz, The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36 (2016) 13–79. [Google Scholar]
  16. B. Leimkuhler, C. Matthews and M. V. Tretyakov, On the long-time integration of stochastic gradient systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2014) 20140120, 16. [Google Scholar]
  17. B. Leimkuhler, C. Matthews and M. V. Tretyakov, On the long-time integration of stochastic gradient systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2014) 20140120, 16. [Google Scholar]
  18. J.C. Mattingly, A.M. Stuart and D.J. Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stochastic Process. Appl. 101 (2002) 185–232. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.C. Mattingly, A.M. Stuart and M.V. Tretyakov, Convergence of numerical time-averaging and stationary measures via Poisson equations. SIAM J. Numer. Anal. 48 (2010) 552–577. [Google Scholar]
  20. G.N. Milstein and M.V. Tretyakov, Computing ergodic limits for Langevin equations. Phys. D 229 (2007) 81–95. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Pagès and C. Rey, Recursive computation of invariant distributions of Feller processes. Stochastic Process. Appl. 130 (2020) 328–365. [CrossRef] [MathSciNet] [Google Scholar]
  22. C. Pang, X. Wang and Y. Wu, Linear implicit approximations of invariant measures of semi-linear sdes with non-globally Lipschitz coefficients. Preprint, 2023. [Google Scholar]
  23. S. Sabanis, A note on tamed Euler approximations. Electron. Commun. Probab. 18 (2013) 10. [CrossRef] [Google Scholar]
  24. D. Talay, Discrétisation d’une équation différentielle stochastique et calcul approché d’espérances de fonctionnelles de la solution. RAIRO Modél. Math. Anal. Numér. 20 (1986) 141–179. [MathSciNet] [Google Scholar]
  25. D. Talay, Classification of discretization schemes of diffusions according to an ergodic criterium, in Stochastic modelling and filtering (Rome, 1984). Vol. 91 of Lect. Notes Control Inf. Sci.. Springer, Berlin (1987) 207–218. [Google Scholar]
  26. D. Talay, Second-order discretization schemes of stochastic differential systems for the computation of the invariant law. Stochastics Stochastic Rep. 29 (1990) 13–36. [CrossRef] [Google Scholar]
  27. D. Talay, Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Vol. 8. (2002) 163–198. [Google Scholar]
  28. D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8 (1991) 483–509. [Google Scholar]
  29. G. Vilmart, Postprocessed integrators for the high order integration of ergodic SDEs. SIAM J. Sci. Comput. 37 (2015) A201–A220. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.