Open Access
Issue
ESAIM: PS
Volume 26, 2022
Page(s) 208 - 242
DOI https://doi.org/10.1051/ps/2022004
Published online 20 May 2022
  1. C. Aicher, A.Z. Jacobs and A. Clauset, Learning Latent Block Structure in Weighted Networks. J. Complex Netw. 3 (2015) 221–248. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Ali and J. Gao, Classification of matrix-variate fisher—bingham distribution via maximum likelihood estimation using manifold valued data. Neurocomputing 295 (2018) 72–85. [CrossRef] [Google Scholar]
  3. S. Allassonniere, Y. Amit and A. Trouvé, Toward a coherent statistical framework for dense deformable template estimation. J. Royal Stat. Soc. B 69 (2007) 3–29. [CrossRef] [MathSciNet] [Google Scholar]
  4. E.S. Allman, C. Matias and J.A. Rhodes, Identifiability of parameters in latent structure models with many observed variables. Ann. Stat. 37 (2009) 3099–3132. [CrossRef] [Google Scholar]
  5. T.W. Anderson and Y. Amemiya, The asymptotic normal distribution of estimators in factor analysis under general conditions. Ann. Stat. 16 (1988) 759–771. [CrossRef] [Google Scholar]
  6. O.E. Barndorff-Nielsen, Identifiability of mixtures of exponential families. J. Math. Anal. Appl. 12 (1965) 115–121. [CrossRef] [MathSciNet] [Google Scholar]
  7. O.E. Barndorff-Nielsen, Information and exponential families. In: Statistical theory, Wiley series in probability and mathematical statistics. Wiley, Chichester, New York (1978). [Google Scholar]
  8. P.J. Bickel, Y. Ritov and T. Rydén, Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models. Ann. Stat. 26 (1998) 1614–1635. [CrossRef] [Google Scholar]
  9. S. Bonhomme and J.-M. Robin, Consistent noisy independent component analysis. J. Econ. 149 (2009) 12–25. [CrossRef] [Google Scholar]
  10. J. Chen, G. Han, H. Cai, J. Ma, M. Kim, P. Laurienti and G. Wu, Estimating common harmonic waves of brain networks on Stiefel manifold, in A.L. Martel, P. Abolmaesumi, D. Stoyanov, D. Mateus, M.A. Zuluaga, S.K. Zhou, D. Racoceanu and L. Joskowicz (editors), Medical Image Computing and Computer Assisted Intervention — MICCAI 2020, Lecture Notes in Computer Science, Springer International Publishing, Cham (2020) 367–367. [Google Scholar]
  11. J. Chevallier, V. Debavelaere and S. Allassonniére, A coherent framework for learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data. SIAM J. Imag. Sci. 14 (2021) 349–388. [CrossRef] [Google Scholar]
  12. Y. Chikuse, Concentrated matrix Langevin distributions. J. Multivar. Anal. 85 (2003) 375–394. [CrossRef] [Google Scholar]
  13. Y. Chikuse, Statistics on Special Manifolds, Lecture Notes in Statistics, Springer-Verlag, New York (2003). [CrossRef] [Google Scholar]
  14. Y. Chikuse, State space models on special manifolds. J. Multivar. Anal. 97 (2006) 1284–1294. [CrossRef] [Google Scholar]
  15. R. Douc, Non Singularity of the Asymptotic Fisher Information Matrix in Hidden Markov Models. arXiv:math/0511631 (2005). [Google Scholar]
  16. R. Douc, E. Moulines, J. Olsson and R. van Handel, Consistency of the maximum likelihood estimator for general hidden Markov models. Ann. Stat. 39 (2011) 474–513. [Google Scholar]
  17. R. Douc, F. Roueff and T. Sim, Necessary and sufficient conditions for the identifiability of observation-driven models. J. Time Ser. Anal. 42 (2021) 140–160. [CrossRef] [Google Scholar]
  18. N.S. D’Souza, M.B. Nebel, N. Wymbs, S. Mostofsky and A. Venkataraman, A generative-discriminative basis learning framework to predict clinical severity from resting state functional MRI data, in A.F. Frangi, J.A. Schnabel, C. Davatzikos, C. Alberola-Léopez and G. Fichtinger (editors), Medical Image Computing and Computer Assisted Intervention — MICCAI 2018. Springer International Publishing, Cham (2018), vol. 11072, 163–163. [CrossRef] [Google Scholar]
  19. N.S. D’Souza, M.B. Nebel, N. Wymbs, S. Mostofsky and A. Venkataraman, Integrating neural networks and dictionary learning for multidimensional clinical characterizations from functional connectomics data, in D. Shen, T. Liu, T.M. Peters, L.H. Staib, C. Essert, S. Zhou, P.-T. Yap and A. Khan (editors), Medical Image Computing and Computer Assisted Intervention — MICCAI 2019. Springer International Publishing, Cham (2019), vol. 11766, 709–709. [CrossRef] [Google Scholar]
  20. L.L. Duan, G. Michailidis and M. Ding, Spiked Laplacian Graphs: Bayesian Community Detection in Heterogeneous Networks. arXiv:1910.02471 [stat] (2020). [Google Scholar]
  21. A. Edelman, T.A. Arias and S.T. Smith, The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998) 303–353. [CrossRef] [Google Scholar]
  22. K. Fan, On a theorem of weyl concerning eigenvalues of linear transformations I. Proc. Natl. Acad. Sci. 35 (1949) 652–655. [CrossRef] [PubMed] [Google Scholar]
  23. P.J. Forrester, Log-gases and random matrices (LMS-34). Vol. 34 of London Mathematical Society Monographs. Princeton University Press (2010). [Google Scholar]
  24. C. Fraikin, K. Hüper and P.V. Dooren, Optimization over the Stiefel Manifold, in vol. 7 of PAMM: Proceedings in Applied Mathematics and Mechanics. Wiley Online Library (2007) 1062205–1062205. [CrossRef] [Google Scholar]
  25. Y. Gu and G. Xu, Identifiability of Hierarchical Latent Attribute Models. arXiv:1906.07869 [cs, stat] (2021). [Google Scholar]
  26. P.D. Hoff, Simulation of the matrix Bingham—von Mises—Fisher distribution, with applications to multivariate and relational data. J. Comput. Graph. Stat. 18 (2009) 438–456. [CrossRef] [Google Scholar]
  27. H. Holzmann, A. Munk and B. Stratmann, Identifiability of finite mixtures - with applications to circular distributions. Sankhya 66 (2004) 440–449. [MathSciNet] [Google Scholar]
  28. S. Janson, Graphons, Cut Norm and Distance, Couplings and Rearrangements, Vol. 4 of New York Journal of Mathematics. NYJM Monographs, State University of New York, University at Albany, Albany, NY 4 (2013) 76. [Google Scholar]
  29. M. Jauch, P.D. Hoff and D.B. Dunson, Random Orthogonal Matrices and the Cayley Transform. Bernoulli 26 (2020) 1560–1586. [CrossRef] [MathSciNet] [Google Scholar]
  30. P.E. Jupp and K.V. Mardia, Maximum Likelihood Estimators for the Matrix Von Mises-Fisher and Bingham Distributions. Ann. Stat. 7 (1979) 599–606. [Google Scholar]
  31. J.T. Kent, Identifiability of Finite Mixtures for Directional Data, Ann. Stat. 11 (1983). [Google Scholar]
  32. C.G. Khatri and K.V. Mardia, The von Mises—Fisher Matrix Distribution in Orientation Statistics. J.R. Stat Soc. Ser. B (Methodological) 39 (1977) 95–106. [Google Scholar]
  33. A. Khetan and M. Mj, Cheeger Inequalities for Graph Limits, arXiv:1807.02225 [math] (2018). [Google Scholar]
  34. T.N. Kipf and M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, in ICLR 2017 (2017). [Google Scholar]
  35. A. Kume, S.P. Preston and A.T.A. Wood, Saddlepoint Approximations for the Normalizing Constant of Fisher—Bingham Distributions on Products of Spheres and Stiefel Manifolds. Biometrika 100 (2013) 971–984. [CrossRef] [MathSciNet] [Google Scholar]
  36. P. Latouche and S. Robin, Variational Bayes Model Averaging for Graphon Functions and Motif Frequencies Inference in W-graph Models, Stat. Comput. 26 (2016) 1173–1173. [CrossRef] [MathSciNet] [Google Scholar]
  37. M. Lavielle and L. Aarons, What Do We Mean by Identifiability in Mixed Effects Models?. J. Pharmacokinet. Pharmacodyn. 43 (2016) 111–122. [CrossRef] [PubMed] [Google Scholar]
  38. E.L. Lehmann and G. Casella, Theory of Point Estimation, Springer Texts in Statistics, 2nd edn., Springer, New York (2003). [Google Scholar]
  39. X. Li, N.C. Dvornek, Y. Zhou, J. Zhuang, P. Ventola and J.S. Duncan, Graph Neural Network for Interpreting Task-fMRI Biomarkers, in D. Shen, T. Liu, T.M. Peters, L.H. Staib, C. Essert, S. Zhou, P.-T. Yap and A. Khan (editors), Medical Image Computing and Computer Assisted Intervention — MICCAI 2019, Lecture Notes in Computer Science, Springer International Publishing, Cham (2019) 485–485. [Google Scholar]
  40. X. Liang, L. Wang, L.-H. Zhang and R.-C. Li, On Generalizing Trace Minimization. arXiv:2104.00257 [cs, math] (2021). [Google Scholar]
  41. L. Lin, V. Rao and D. Dunson, Bayesian Nonparametric Inference on the Stiefel Manifold. Stat. Sin. 27 (2017) 535–553. [Google Scholar]
  42. L. Lovász, Large Networks and Graph Limits. Colloquium Publications, vol. 60, American Mathematical Society, Providence, Rhode Island (2012). [CrossRef] [Google Scholar]
  43. C. Mantoux, B. Couvy-Duchesne, F. Cacciamani, S. Epelbaum, S. Durrleman and S. Allassonnière, Understanding the Variability in Graph Data Sets through Statistical Modeling on the Stiefel Manifold, Entropy 23 (2021) 490. [CrossRef] [PubMed] [Google Scholar]
  44. S.S. Mukherjee and S. Chakrabarti, Graphon Estimation from Partially Observed Network Data. arXiv:1906.00494 [cs, stat] (2019). [Google Scholar]
  45. S.C. Olhede and P.J. Wolfe, Network Histograms and Universality of Blockmodel Approximation. Proc. Natl. Acad. Sci. 111 (2014) 14722–14727. [CrossRef] [PubMed] [Google Scholar]
  46. S. Pal, S. Sengupta, R. Mitra and A. Banerjee, Conjugate Priors and Posterior Inference for the Matrix Langevin Distribution on the Stiefel Manifold. Bayesian Anal. 15 (2020) 871–908. [MathSciNet] [Google Scholar]
  47. T.P. Peixoto, Bayesian Stochastic Blockmodeling, in P. Doreian, V. Batagelj and A. Ferligoj (editors), Advances in Network Clustering and Blockmodeling, Wiley Series in Computational and Quantitative Social Science, 289–332, Wiley (2020) . [Google Scholar]
  48. Z. Ren, T. Sun, C.-H. Zhang and H.H. Zhou, Asymptotic Normality and Optimalities in Estimation of Large Gaussian Graphical Models. Ann. Stat. 43 (2015). [Google Scholar]
  49. A.A. Shabalin and A.B. Nobel, Reconstruction of a Low-Rank Matrix in the Presence of Gaussian Noise. J. Multivar. Anal. 118 (2013) 67–76. [CrossRef] [Google Scholar]
  50. B. Sischka and G. Kauermann, EM-based Smooth Graphon Estimation Using MCMC and Spline-Based Approaches. Soc. Netw. 68 (2022) 279–295. [CrossRef] [Google Scholar]
  51. E. Tabrizi, E.B. Samani and M. Ganjali, A Note on the Identifiability of Latent Variable Models for Mixed Longitudinal Data. Stat. Probab. Lett. 167 (2020) 108882. [CrossRef] [Google Scholar]
  52. H. Teicher, Identifiability of Finite Mixtures. Ann. Math. Stat. 34 (1963) 1265–1269. [CrossRef] [Google Scholar]
  53. T. Traynor, Change of Variables for Hausdorff Measure (from the Beginning). Universitá degli Studi di Trieste. Dipartimento di Scienze Matematiche 26 suppl. (1994) 327–327. [Google Scholar]
  54. A.W. van der Vaart, Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics, 1st edn., Cambridge Univ. Press, Cambridge (1998). [Google Scholar]
  55. J. Xu, Rates of Convergence of Spectral Methods for Graphon Estimation, in International Conference on Machine Learning (2018) 5433–5433. [Google Scholar]
  56. S.J. Yakowitz and J.D. Spragins, On the Identifiability of Finite Mixtures. Ann. Math. Stat. 39 (1968) 209–214. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.