Open Access
Volume 26, 2022
Page(s) 152 - 170
Published online 21 February 2022
  1. G. Bejerano and G. Yona, Variations on probabilistic suffix trees: statistical modeling and prediction of protein families. Bioinformatics 17 (2001) 23–43. [CrossRef] [PubMed] [Google Scholar]
  2. A.A. Borovkov, Probability Theory. Springer (2013). [CrossRef] [Google Scholar]
  3. A.A. Borovkov, Functional limit theorems for compound renewal processes. Siberian Math. J. 60 (2019) 27–40. [CrossRef] [MathSciNet] [Google Scholar]
  4. E.V. Bulinskaya and A.I. Sokolova, Limit theorems for generalized renewal processes. Theory Prob. Appl. 62 (2018) 35–54. [CrossRef] [Google Scholar]
  5. P. Cénac, A. Le Ny, B. de Loynes and Y. Offret, Persistent random walks. I. Recurrence versus transience. J. Theor. Prob. 31 (2018) 232–243. [Google Scholar]
  6. P. Cénac, B. Chauvin, F. Paccaut and N. Pouyanne, Variable length markov chains, persistent random walks: a close encounter. arXiv:1909.04475 (2019). [Google Scholar]
  7. P. Cénac, B. Chauvin, F. Paccaut and N. Pouyanne, Context trees, variable length Markov chains and dynamical sources. In Seminaire de Probabilites XLIV 1-39. Springer, Berlin, Heidelberg (2012). [Google Scholar]
  8. J-R. Chazottes and E. Olivier, Relative entropy, dimensions and large deviations for g-measures. J. Phys. A 33 (2000) 675–689. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.R. Chazottes and D. Gabrielli, Large deviations for empirical entropies of g-measures. Nonlinearity 18 (2005) 2545–2563. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Comets, R. Fernández and P.A. Ferrari, Processes with long memory: regenerative construction and perfect simulation. Ann. Appl. Probab. 12 (2002) 921–943. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Springer, New York (1998). [CrossRef] [Google Scholar]
  12. A. Duarte and G. Ost, A model for neural activity in the absence of external stimuli. Markov Processes Related Fields 22 (2016) 37. [MathSciNet] [Google Scholar]
  13. A. Duarte, A. Galves, E. Löcherbach and G. Ost, Estimating the interaction graph of stochastic neural dynamics. To be appear in BERNOULLI (2018). [Google Scholar]
  14. A. Galves and E. Löcherbach, Stochastic chains with memory of variable length. “Festschrift in honour of the 75th birthday of Jorma Rissanen”, TICSP series 38 (2008) 117–133. [Google Scholar]
  15. A. Galves, C. Galves, J.E. Garcia, N.L. Garcia and F. Leonardi, Context tree selection and linguistic rhythm retrieval from written texts. Ann. Appl. Stat. 6 (2012) 186–209. [CrossRef] [MathSciNet] [Google Scholar]
  16. S. Gallo, Chains with unbounded variable length memory: perfect simulation and a visible regeneration scheme. Adv. Appl. Prob. 43 (2011) 735–759. [CrossRef] [Google Scholar]
  17. R. Lefevere, M. Mariani and L. Zambotti, Large deviations for renewal processes. Stochastic Process. Appl. 121 (2011) 2243–2271. [CrossRef] [MathSciNet] [Google Scholar]
  18. F.G. Leonardi, A generalization of the PST algorithm: modeling the sparse nature of protein sequences. Bioinformatics 22 (2006) 1302–1307. [CrossRef] [PubMed] [Google Scholar]
  19. A.V. Logachov and A.A. Mogulskii, Anscombe-type theorem and moderate deviations for trajectories of a compound renewal process. J. Math. Sci. 229 (2018) 36–50. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Maillard and S. Schöpfer, A functional central limit theorem for regenerative chains. arXiv:0801.2263 (2008). [Google Scholar]
  21. A.A. Mogulskii, Local theorems for arithmetic compound renewal processes when Cramer’s condition holds. Siberian Electr. Math. Rep. 16 (2019) 21–41. [Google Scholar]
  22. J. Rissanen, A universal data compression system. IEEE Trans. Inf. Theory 29 (1983) 656–664. [CrossRef] [Google Scholar]
  23. J. Tiefeng, Large deviations for renewal processes. Stochastic Process. Appl. 50 (1994) 57–71. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.