Open Access
Issue
ESAIM: PS
Volume 25, 2021
Page(s) 408 - 432
DOI https://doi.org/10.1051/ps/2021015
Published online 05 October 2021
  1. O. Ajmal, L. Duchateau and E. Kuhn, Convergent stochastic algorithm for parameter estimation in frailty models using integrated partial likelihood. Preprint arXiv:1909.07056 (2019). [Google Scholar]
  2. S. Allassonnière and J. Chevallier, A new class of em algorithms. escaping local minima and handling intractable sampling. Preprint (2019). [Google Scholar]
  3. S. Allassonnière, E. Kuhn, A. Trouvé, et al., Construction of Bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli 16 (2010) 641–678. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Allassonniere, L. Younes, et al., A stochastic algorithm for probabilistic independent component analysis. Ann. Appl. Stat. 6 (2012) 125–160. [Google Scholar]
  5. C. Andrieu, É. Moulines and P. Priouret, Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44 (2005) 283–312. [Google Scholar]
  6. S. Balakrishnan, M.J. Wainwright, B. Yu, et al., Statistical guarantees for the em algorithm: from population to sample-based analysis. Ann. Stat. 45 (2017) 77–120. [Google Scholar]
  7. S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J.M. Ebos, L. Hlatky and P. Hahnfeldt, Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput Biol. 10 (2014) e1003800. [CrossRef] [PubMed] [Google Scholar]
  8. A. Bône, O. Colliot and S. Durrleman, Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018) 9271–9280. [Google Scholar]
  9. S. Chrétien and A.O. Hero, On em algorithms and their proximal generalizations. ESAIM: Probab. Stat. 12 (2008) 308–326. [Google Scholar]
  10. V. Debavelaere, S. Durrleman and S. Allassonnière, Learning the clustering of longitudinal shape data sets into a mixture of independent or branching trajectories. Int. J. Comput. Vision (2020) 1–16. [Google Scholar]
  11. B. Delyon, M. Lavielle and E. Moulines, Convergence of a stochastic approximation version of the em algorithm. Ann. Stat. (1999) 94–128. [Google Scholar]
  12. A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the em algorithm. J. Roy. Stat. Soc. Ser. B (Methodological) 39 (1977) 1–22. [Google Scholar]
  13. A. Dubois, M. Lavielle, S. Gsteiger, E. Pigeolet and F. Mentré, Model-based analyses of bioequivalence crossover trials using the stochastic approximation expectation maximisation algorithm. Stat. Med. 30 (2011) 2582–2600. [CrossRef] [PubMed] [Google Scholar]
  14. J. Guedj and A.S. Perelson, Second-phase hepatitis c virus RNA decline during Telaprevir-based therapy increases with drug effectiveness: implications for treatment duration. Hepatology 53 (2011) 1801–1808. [CrossRef] [PubMed] [Google Scholar]
  15. E. Kuhn and M. Lavielle, Coupling a stochastic approximation version of em with an MCMC procedure. ESAIM: Probab. Stat. 8 (2004) 115–131. [Google Scholar]
  16. E. Kuhn and M. Lavielle, Maximum likelihood estimation in nonlinear mixed effects models. Comput. Stat. Data Anal. 49 (2005) 1020–1038. [Google Scholar]
  17. E. Kuhn, C. Matias and T. Rebafka, Properties of the stochastic approximation em algorithm with mini-batch sampling. Stat. Comput. 30 (2020) 1725–1739. [Google Scholar]
  18. T. Lartigue, S. Durrleman and S. Allassonnière, Deterministic approximate em algorithm; application to the Riemann approximation em and the tempered em. Preprint arXiv:2003.10126 (2020). [Google Scholar]
  19. M. Lavielle, Mixed effects models for the population approach: models, tasks, methods and tools. CRC Press (2014). [Google Scholar]
  20. M. Lavielle and F. Mentré, Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the Monolix software. J. Pharmacokinet. Pharmacodyn. 34 (2007) 229–249. [CrossRef] [PubMed] [Google Scholar]
  21. F. Lindsten, An efficient stochastic approximation em algorithm using conditional particle filters, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE (2013) 6274–6278. [Google Scholar]
  22. Lixoft SAS, Monolix (2020). [Google Scholar]
  23. J. Ma, L. Xu and M.I. Jordan, Asymptotic convergence rate of the algorithm for Gaussian mixtures. Neural Comput. 12 (2000) 2881–2907. [CrossRef] [PubMed] [Google Scholar]
  24. X.-L. Meng et al., On the rate of convergence of the ECM algorithm. Ann. Stat. 22 (1994) 326–339. [Google Scholar]
  25. C. Meza, F. Osorio and R. De la Cruz, Estimation in nonlinear mixed-effects models using heavy-tailed distributions. Stat. Comput. 22 (2012) 121–139. [Google Scholar]
  26. X. Panhard and A. Samson, Extension of the SAEM algorithm for nonlinear mixed models with 2 levels of random effects. Biostatistics 10 (2009) 121–135. [CrossRef] [PubMed] [Google Scholar]
  27. R.A. Redner and H.F. Walker, Mixture densities, maximum likelihood and the algorithm. SIAM Rev. 26 (1984) 195–239. [Google Scholar]
  28. A. Samson, M. Lavielle and F. Mentré, Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: application to HIV dynamics model. Comput. Stat. Data Anal. 51 (2006) 1562–1574. [Google Scholar]
  29. J.-B. Schiratti, S. Allassonniere, O. Colliot and S. Durrleman, Learning spatiotemporal trajectories from manifold-valued longitudinal data. Adv. Neural Inf. Process. Syst. (2015) 2404–2412. [Google Scholar]
  30. D. Sissoko, C. Laouenan, E. Folkesson, A.-B. M’lebing, A.-H. Beavogui, S. Baize, A.-M. Camara, P. Maes, S. Shepherd, C. Danel, et al., Experimental treatment with Favipiravir for Ebola virus disease (the JIKI trial): a historically controlled, single-arm proof-of-concept trial in guinea. PLoS Med. 13 (2016) e1001967. [CrossRef] [PubMed] [Google Scholar]
  31. P. Tseng, An analysis of the algorithm and entropy-like proximal point methods. Math Oper. Res. 29 (2004) 27–44. [Google Scholar]
  32. J. Wang, Em algorithms for nonlinear mixed effects models. Comput. Stat. Data Anal. 51 (2007) 3244–3256. [Google Scholar]
  33. G.C. Wei and M.A. Tanner, A Monte Carlo implementation of the algorithm and the poor man’s data augmentation algorithms. J. Am. Stat. Assoc. 85 (1990) 699–704. [Google Scholar]
  34. C.J. Wu, On the convergence properties of the algorithm. Ann. Stat. (1983) 95–103. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.