Free Access
Issue
ESAIM: PS
Volume 25, 2021
Page(s) 31 - 52
DOI https://doi.org/10.1051/ps/2021001
Published online 04 March 2021
  1. R. Abid, C.C. Kokonendji and A. Masmoudi, On Poisson-exponential-Tweedie models for ultra-overdispersed count data. To appear in: AStA Adv. Stat. Anal. (2020). 10.1007/s10182-020-00375-4. [Google Scholar]
  2. Y. Awad, S.K. Bar-Lev and U. Makov, A new class counting distributions embedded in the Lee-Carter model for mortality projections: a Bayesian approach. A technical report No. 146. Actuarial Research Center, University of Haifa, Israel (2016). [Google Scholar]
  3. S.K. Bar-Lev, Discussion on paper by B. Jørgensen, “Exponential dispersion models”. J. Roy. Stat. Soc. Ser. B 49 (1987) 153–154. [Google Scholar]
  4. S.K. Bar-Lev and P. Enis, Reproducibility and natural exponential families with power variance functions. Ann. Stat. 14 (1986) 1507–1522. [Google Scholar]
  5. S.K. Bar-Lev and C.C. Kokonendji, On the mean value parameterization of natural exponential families – a revisited review. Math. Methods Stat. 26 (2017) 159–175. [Google Scholar]
  6. S.K. Bar-Lev and A. Ridder, Monte Carlo methods for insurance risk computation. Int. J. Stat. Probab. 8 (2019) 54–74. [Google Scholar]
  7. S.K. Bar-Lev and A. Ridder, Exponential dispersion models for overdispersed zero-inflated count data. Preprint arXiv:2003.13854v1 (2020). [Google Scholar]
  8. O. Barndorff-Nielsen, Information and Exponential Families in Statistical Theory. Wiley, New York (1978). [Google Scholar]
  9. D. Bhati and H.S. Bakouch, A new infinitely divisible discrete distribution with applications to count data modelling. Commun. Stat. Theory Methods 48 (2019) 1401–1416. [Google Scholar]
  10. W.H. Bonat, B. Jørgensen, C.C. Kokonendji, J. Hinde and C.G.B. Demétrio, Extended Poisson–Tweedie: Properties and regression models for count data. Stat. Model. 18 (2018) 24–49. [Google Scholar]
  11. W. Bryc and M. Ismail, Approximation operators, q-exponential, and free exponential families. Preprint arXiv:math/0512224 (2005). [Google Scholar]
  12. F. Castellares, A.J. Lemonte and G. Moreno-Arenas, On the two-parameter Bell–Touchard discrete distribution. Commun. Stat. Theory Methods 49 (2020) 4834–4852. [Google Scholar]
  13. P.C. Consul, Generalized Poisson Distributions: Properties and Applications. Marcel Dekker, New York (1989). [Google Scholar]
  14. P.C. Consul and F. Famoye, Lagrangian Probability Distributions. Birkhäuser Boston, Basel, Berlin (2006). [Google Scholar]
  15. M. Denuit, A new distribution of Poisson-type for the number of claims. ASTIN Bull. 27 (1997) 229–242. [Google Scholar]
  16. A.H. El-Shaarawi, R. Zhu and H. Joe, Modelling species abundance using the Poisson-Tweedie family. Environmetrics 22 (2011) 152–164. [Google Scholar]
  17. Y. Gençtürk and A. Yiǧiter, Modelling claim number using a new mixture model: negative binomial gamma distribution. J. Stat. Comput. Simul. 86 (2016) 1829–1839. [Google Scholar]
  18. E. Gómez-Déniz and E. Calderin-Ojeda, The discrete Lindley distribution: properties and applications. J. Stat. Comput. Simul. 81 (2011) 1405–1416. [Google Scholar]
  19. E. Gómez-Déniz, J.M. Sarabia and E. Calderin-Ojeda, A new discrete distribution with actuarial applications. Insurance: Math. Econ. 48 (2011) 406–412. [Google Scholar]
  20. E. Gómez-Déniz, A. Hernández-Bastida and M.P.A. Fernández-Sánchez, A suitable discrete distribution for modelling automobile claim frequencies. Bull. Malays. Math. Sci. Soc. 39 (2016) 633–647. [Google Scholar]
  21. A. Gossiaux and J. Lemaire, Methodes d’ajustement de distributions de sinistres. Bull. Assoc. Swiss Actuar. 81 (1981) 87–95. [Google Scholar]
  22. J. Hinde and C.G.B. Demétrio, Overdispersion: models and estimation. Comput. Stat. Data Anal. 27 (1998) 151–170. [Google Scholar]
  23. B. Jørgensen, Exponential dispersion models (with discussion). J. Roy. Stat. Soc. B 49 (1987) 127–162. [Google Scholar]
  24. B. Jørgensen, The Theory of Exponential Dispersion Models. Vol. 76 of Monographs on Statistics and Probability. Chapman and Hall, London (1997). [Google Scholar]
  25. B. Jørgensen and C.C. Kokonendji, Discrete dispersion models and their Tweedie asymptotics. AStA Adv. Stat. Anal. 100 (2016) 43–78. [Google Scholar]
  26. C.C. Kokonendji, S. Dossou-Gbété and C.G.B. Demétrio, Some discrete exponential dispersion models: Poisson-Tweedie and Hinde-Demétrio classes. Stat. Oper. Res. Trans. 28 (2004) 201–214. [Google Scholar]
  27. C.C. Kokonendji, C.G.B. Demétrio and S.S. Zocchi, On Hinde–Demétrio regression models for overdispered count data. Stat. Methodol. 4 (2007) 277–291. [Google Scholar]
  28. C.C. Kokonendji and M. Khoudar, On strict arcsine distribution. Commun. Stat. - Theory Methods 33 (2004) 993–1006. [Google Scholar]
  29. C.C. Kokonendji and D. Malouche, A property of count distributions in the Hinde-Demétrio family. Commun. Stat. Theory Methods 37 (2008) 1823–1834. [Google Scholar]
  30. R.D. Lee and L. Carter, Modelling and forecasting the time series of US mortality. J. Am. Stat. Assoc. 87 (1992) 659–671. [Google Scholar]
  31. G. Letac and M. Mora, Natural real exponential families with cubic variance functions. Ann. Stat. 18 (1990) 1–37. [Google Scholar]
  32. C.N. Morris, Natural exponential families with quadratic variance functions. Ann. Stat. 10 (1982) 65–80. [Google Scholar]
  33. E.D. Rainville, Special Functions. The Macmillan Company, New York (1960). [Google Scholar]
  34. A.E. Renshaw and S. Haberman, A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Math. Econ. 38 (2006) 556–570. [Google Scholar]
  35. M. Ruohonen, On a model for the claim number process. ASTIN Bull. 18 (1988) 57–68. [Google Scholar]
  36. M.C.K. Tweedie, An index which distinguishes between some important exponential families. Statistics: Applications and New Directions. Edited by J. K. Ghosh and J. Roy. Proc. Indian Institute Golden Jubilee lnternat Conf. Indian Statist. Inst. Calcutta (1984) 579–604. [Google Scholar]
  37. G. Willmot, The Poisson-inverse Gaussian distribution as an alternative to the negative binomial. Scand. Actuar. J. 1987 (1987) 113–127. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.