Free Access
Issue
ESAIM: PS
Volume 25, 2021
Page(s) 87 - 108
DOI https://doi.org/10.1051/ps/2021004
Published online 23 March 2021
  1. P.K. Agarwal, S. Har-Peled, S. Suri, H. Yılıdz and W. Zhang, Convex hulls under uncertainty. Algorithmica 79 (2017) 340–367. [Google Scholar]
  2. A. Baddeley and R. Turner, spatstat: An R package for analyzing spatial point patterns. J. Stat. Softw. 12 (2005) 1–42. [Google Scholar]
  3. N. Baldin and M. Reiß, Unbiased estimation of the volume of a convex body. Stochastic Process. Appl. 126 (2016) 3716–3732. [Google Scholar]
  4. J.-C. Breton and N. Privault, Factorial moments of point processes. Stochastic Process. Appl. 124 (2014) 3412–3428. [Google Scholar]
  5. P. Calka, An explicit expression for the distribution of the number of sides of the typical Poisson-Voronoi cell. Adv. Appl. Probab. 35 (2003) 863–870. [Google Scholar]
  6. R. Cowan, A more comprehensive complementary theorem for the analysis of Poisson point processes. Adv. Appl. Probab. 38 (2006) 581–601. [Google Scholar]
  7. R. Cowan, M. Quine and S. Zuyev, Decomposition of gamma-distributed domains constructed from Poisson point processes. Adv. Appl. Probab. 35 (2003) 56–69. [Google Scholar]
  8. Y. Davydov and S. Nagaev, On the convex hulls of point processes. Manuscript (2000). [Google Scholar]
  9. L. Decreusefond and I. Flint, Moment formulae for general point processes. J. Funct. Anal. 267 (2014) 452–476. [Google Scholar]
  10. T.G. Kurtz, The optional sampling theorem for martingales indexed by directed sets. Ann. Probab. 8 (1980) 675–681. [Google Scholar]
  11. J. Mecke, Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitstheorie Verw. Geb. 9 (1967) 36–58. [Google Scholar]
  12. R.E. Miles, On the homogeneous planar Poisson point process. Math. Biosci. 6 (1970) 85–127. [Google Scholar]
  13. I. Molchanov, Theory of random sets. Probability and its Applications. Springer-Verlag, London, New York (2005). [Google Scholar]
  14. X.X. Nguyen and H. Zessin, Integral and differential characterization of the Gibbs process. Math. Nachr. 88 (1979) 105–115. [Google Scholar]
  15. N. Privault, Moment identities for Poisson-Skorohod integrals and application to measure invariance. C. R. Math. Acad. Sci. Paris 347 (2009) 1071–1074. [Google Scholar]
  16. N. Privault, Invariance of Poisson measures under random transformations. Ann. Inst. Henri Poincaré Probab. Statist. 48 (2012) 947–972. [Google Scholar]
  17. N. Privault, Moments of Poisson stochastic integrals with random integrands. Prob. Math. Stat. 32 (2012) 227–239. [Google Scholar]
  18. N. Privault, Laplace transform identities for the volume of stopping sets based on Poisson point processes. Adv. Appl. Probab. 47 (2015) 919–933. [Google Scholar]
  19. R. Schneider and W. Weil, Stochastic and integral geometry. Probability and its Applications. Springer-Verlag, Berlin, New York (2008). [Google Scholar]
  20. I.M. Slivnyak, Some properties of stationary flows of homogeneous random events. Theory Probab. Appl. 7 (1962) 336–341. [Google Scholar]
  21. S. Zuyev, Stopping sets: gamma-type results and hitting properties. Adv. Appl. Probab. 31 (1999) 355–366. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.