Open Access
Volume 25, 2021
Page(s) 286 - 297
Published online 07 July 2021
  1. J.-M. Bardet and D. Surgailis, Nonparametric estimation of the local Hurst function of multifractional Gaussian processes. Stochastic Process. Appl. 123 (2013) 1004–1045. [Google Scholar]
  2. A. Basse-O’Connor, R. Lachièze-Rey and M. Podolskij, Power variation for a class of stationary increments Lévy driven moving averages. Ann. Probab. 45 (2017) 4477–4528. [Google Scholar]
  3. A. Benassi, S. Cohen and J. Istas, Identification and properties of real harmonizable fractional Lévy motions. Bernoulli 8 (2002) 97–115. [MathSciNet] [Google Scholar]
  4. A. Benassi, S. Cohen and J. Istas, On roughness indices for fractional fields. Bernoulli 10 (2004) 357–373. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Benassi, S. Jaffard and D. Roux, Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 19–90. [Google Scholar]
  6. S. Cambanis and M. Maejima, Two classes of self-similar stable processes with stationary increments. Stochastic Process. Appl. 32 (1989) 305–329. [Google Scholar]
  7. J.L. Doob, Vol. 7 of Stochastic Processes. Wiley, New York (1953). [Google Scholar]
  8. D. Kremer and H.-P. Scheffler, Multivariate stochastic integrals with respect to independently scattered random measures on δ-rings. Preprint arXiv:1711.00890 [math.PR] (2018) 28. [Google Scholar]
  9. J. Lamperti, Semi-stable stochastic processes. Trans. Am. Math. Soc. 104 (1962) 62–78. [Google Scholar]
  10. T. Marquardt, Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12 (2006) 1099–1126. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.-F. Peltier and J. Lévy Véhel, Multifractional Brownian Motion: Definition and Preliminary Results. Research Report RR-2645, INRIA (1995). Available at [Google Scholar]
  12. B.S. Rajput and J. Rosiński, Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82 (1989) 451–487. [Google Scholar]
  13. J. Rosiński, On the structure of stationary stable processes. Ann. Probab. 23 (1995) 1163–1187. [Google Scholar]
  14. J. Rosiński and G. Samorodnitsky, Classes of mixing stable processes. Bernoulli 2 (1996) 365–377. [Google Scholar]
  15. G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian Random Processes. Stochastic Modeling. Chapman & Hall, New York (1994). Stochastic models with infinite variance. [Google Scholar]
  16. K. Sato, Lévy processes and infinitely divisible distributions. Vol. 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). Translated from the 1990 Japanese original, Revised by the author. [Google Scholar]
  17. S. Stoev, M.S. Taqqu, C. Park, G. Michailidis and J. Marron, Lass: a tool for the local analysis of self-similarity. Comput. Stat. Data Anal. 50 (2006) 2447–2471. [Google Scholar]
  18. K. Urbanik, Random measures and harmonizable sequences. Stud. Math. 31 (1968) 61–88. [Google Scholar]
  19. W. Willinger, M.S. Taqqu and A. Erramilli, A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks. Stochastics Networks: Theory and Applications. Oxford University Press (1996) 339–366. [Google Scholar]
  20. A.M. Yaglom, An Introduction to the Theory of Stationary Random Functions. Courier Corporation (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.