Open Access
Issue
ESAIM: PS
Volume 24, 2020
Page(s) 963 - 1002
DOI https://doi.org/10.1051/ps/2020027
Published online 15 December 2020
  1. R. Aid, L. Campi, A.N. Huu and N. Touzi, A structural risk-neutral model of electricity prices. Int. J. Theor. Appl. Finance 12 (2009) 925–947. [CrossRef] [Google Scholar]
  2. Y. Aït-Sahalia and J. Jacod, Testing for jumps in a discretely observed process. Ann. Stat. 37 (2009) 184–222. [CrossRef] [Google Scholar]
  3. Y. Aït-Sahalia and J. Jacod, High-frequency financial econometrics. Princeton University Press (2014). [Google Scholar]
  4. O.E. Barndorff-Nielsen, N. Shephard and M. Winkel, Limit theorems for multipower variation in the presence of jumps. Stochastic Process. Appl. 116 (2006) 796–806. [CrossRef] [Google Scholar]
  5. F.E. Benth, J. Kallsen and T. Meyer-Brandis, A non-Gaussian Ornstein–Uhlenbeck process for electricity spot price modeling and derivatives pricing. Appl. Math. Finance 14 (2007) 153–169. [CrossRef] [Google Scholar]
  6. F.E. Benth, R. Kiesel and A. Nazarova, A critical empirical study of three electricity spot price models. Energy Econ. 34 (2012) 1589–1616. [CrossRef] [Google Scholar]
  7. H. Biermé and A. Desolneux, A Fourier approach for the level crossings of shot noise processes with jumps. J. Appl. Probab. 49 (2012) 100–113. [CrossRef] [Google Scholar]
  8. P.J. Brockwell, R.A. Davis and Y. Yang, Estimation for nonnegative lévy-driven Ornstein-Uhlenbeck processes. J. Appl. Probab. 44 (2007) 977–989. [CrossRef] [Google Scholar]
  9. A. Cartea and M.G. Figueroa, Pricing in electricity markets: a mean reverting jump diffusion model with seasonality. Appl. Math. Finance 12 (2005) 313–335. [CrossRef] [Google Scholar]
  10. L. Clewlow and C. Strickland, Valuing energy options in a one factor model fitted to forward prices. Available at SSRN 160608 (1999). [Google Scholar]
  11. L. Clewlow, C. Strickland et al., A multi-factor model for energy derivatives. Technical report (1999). [Google Scholar]
  12. R. Cont and P. Tankov, Vol. 2 of Financial modelling with jump processes. CRC Press (2003). [Google Scholar]
  13. O. Féron and E. Daboussi, Calibration of electricity price models. In Commodities, Energy and Environmental Finance. Springer (2015) 183–207. [CrossRef] [Google Scholar]
  14. H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information. Appl. Stochastic Anal. Stochastic Monographs 5 (1991) 389–414. [Google Scholar]
  15. H. Geman and A. Roncoroni, Understanding the fine structure of electricity prices. J. Bus. 79 (2006) 1225–1261. [CrossRef] [Google Scholar]
  16. J. Gonzalez, J. Moriarty and J. Palczewski, Bayesian calibration and number of jump components in electricity spot price models. Energy Econ. 65 (2017) 375–388. [CrossRef] [Google Scholar]
  17. B. Hambly, S. Howison and T. Kluge, Modelling spikes and pricing swing options in electricity markets. Quant. Finance 9 (2009) 937–949. [CrossRef] [Google Scholar]
  18. J. Jacod and P. Protter, Vol. 67 of Discretization of processes. Springer Science & Business Media (2011). [Google Scholar]
  19. R. Kiesel, G. Schindlmayr and R.H. Börger, A two-factor model for the electricity forward market. Quant. Finance 9 (2009) 279–287. [CrossRef] [Google Scholar]
  20. C. Klüppelberg, T. Meyer-Brandis and A. Schmidt, Electricity spot price modelling with a view towards extreme spike risk. Quant. Finance 10 (2010) 963–974. [CrossRef] [Google Scholar]
  21. S. Koekebakker and F. Ollmar, Forward curve dynamics in the nordic electricity market. Manag. Finance 31 (2005) 73–94. [Google Scholar]
  22. J.J. Lucia and E.S. Schwartz, Electricity prices and power derivatives: Evidence from the Nordic power exchange. Rev. Derivat. Res. 5 (2002 5–50. [CrossRef] [Google Scholar]
  23. C. Mancini, Estimation of the characteristics of the jumps of a general Poisson-diffusion model. Scand. Actuar. J. 2004 (2004) 42–52. [CrossRef] [Google Scholar]
  24. R.C. Merton, Option pricing when underlying stock returns are discontinuous. J. Fin. Econ. 3 (1976) 125–144. [CrossRef] [Google Scholar]
  25. T. Meyer-Brandis and M. Morgan, A dynamic lévy copula model for the spark spread. In Quantitative Energy Finance. Springer (2014) 237–257. [CrossRef] [Google Scholar]
  26. T. Meyer-Brandis and P. Tankov, Multi-factor jump-diffusion models of electricity prices. Int. J. Theor. Appl. Finance 11 (2008) 503–528. [CrossRef] [Google Scholar]
  27. M. Moreno, P. Serrano and W. Stute, Statistical properties and economic implications of jump-diffusion processes with shot-noise effects. Eur. J. Oper. Res. 214 (2011) 656–664. [CrossRef] [Google Scholar]
  28. G. Peccati and M.S. Taqqu, Central limit theorems for double Poisson integrals. Bernoulli 14 (2008) 791–821. [CrossRef] [Google Scholar]
  29. P. Protter and K. Shimbo, No arbitrage and general semimartingales. In Markov processes and related topics: a Festschrift for Thomas G. Kurtz. Institute of Mathematical Statistics (2008) 267–283. [CrossRef] [Google Scholar]
  30. T. Schmidt, Modelling energy markets with extreme spikes. In Mathematical Control Theory and Finance. Springer (2008) 359–375. [CrossRef] [Google Scholar]
  31. E. Schwartz and J.E. Smith, Short-term variations and long-term dynamics in commodity prices. Manag. Sci. 46 (2000) 893–911. [CrossRef] [Google Scholar]
  32. M. Schweizer, A guided tour through quadratic hedging approaches. In Handbooks in mathematical finance: Option pricing, interest rates and risk management. Cambridge University Press (2001) 538–574. [CrossRef] [Google Scholar]
  33. A.E.D. Veraart, Inference for the jump part of quadratic variation of Itô semimartingales. Econ. Theory 26 (2010) 331–368. [CrossRef] [Google Scholar]
  34. X. Warin, Gas storage hedging. In Numerical Methods in Finance. Springer (2012) 421–445. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.