Open Access
Volume 24, 2020
Page(s) 883 - 913
Published online 24 November 2020
  1. D. Appelbaum, Lévy Processes and Stochastic Calculus. Cambridge University Press (2009). [CrossRef] [Google Scholar]
  2. D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators. Vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham (2014). [CrossRef] [Google Scholar]
  3. N. Frikha and S. Menozzi, Concentration bounds for stochastic approximations. Electron. Commun. Probab. 17 (2012) 15. [CrossRef] [Google Scholar]
  4. I. Honoré, S. Menozzi, and G. Pagès, Non-asymptotic Gaussian estimates for the recursive approximation of the invariant distribution of a diffusion. Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020) 1559–1605. [CrossRef] [Google Scholar]
  5. I. Honoré. Sharp non-asymptotic concentration inequalities for the approximation of the invariant distribution of a diffusion. Stochastic Process. Appl. 130 (2020) 2127–2158. [CrossRef] [Google Scholar]
  6. M. Johannes, The statistical and economic role of jumps in continuous-time interest rate models. J. Finance 59 (2004) 227–260. [CrossRef] [Google Scholar]
  7. D. Lamberton and G. Pagès, Recursive computation of the invariant distribution of a diffusion. Bernoulli 8 (2002) 367–405. [MathSciNet] [Google Scholar]
  8. H Masuda, Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps. Stoch. Process. Appl. 117 (2007) 35–56. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Malrieu and D. Talay, Concentration Inequalities for Euler Schemes, in Monte Carlo and Quasi-Monte Carlo Methods 2004, edited by H. Niederreiter and D. Talay. Springer, Berlin, Heidelberg (2006) 355–371. [CrossRef] [Google Scholar]
  10. F. Panloup, Computation of the invariant measure of a Lévy driven SDE: rate of convergence. Stoch. Process. Appl. 118 (2008) 1351–1384. [CrossRef] [Google Scholar]
  11. F. Panloup, Recursive computation of the invariant measure of a stochastic differential equation driven by a Lévy process. Ann. Appl. Probab. 18 (2008) 379–426. [CrossRef] [Google Scholar]
  12. E. Priola. Pathwise uniqueness for singular SDEs driven by stable processes. Osaka J. Math. 49 (2012) 421–447. [Google Scholar]
  13. D. Talay, Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Processes Related Fields 8 (2002) 163–198. [Google Scholar]
  14. D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8 (1990) 94–120. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Tauchen and H. Zhou, Realized jumps on financial markets and predicting credit spreads. J. Econometrics 160 (2011) 102–118. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.