Open Access
Volume 24, 2020
Page(s) 39 - 55
Published online 20 January 2020
  1. A. Ben-Hamou, S. Boucheron and M.I. Ohannessian, Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications. Bernoulli 23 (2017) 249–287. [CrossRef] [Google Scholar]
  2. D. Berend and A. Kontorovich, On the concentration of the missing mass. Electr. Commun. Prob. 18 (2013) 1–7. [Google Scholar]
  3. S.G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999) 1–28. [Google Scholar]
  4. S. Boucheron, G. Lugosi and P. Massart, Concentration inequalities: a nonasymptotic theory of independence. Oxford University Press, Oxford (2013). [Google Scholar]
  5. S. Bubeck and N. Cesa-Bianchi, Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Found. Trends Mach. Learn. 5 (2012) 1–122. [CrossRef] [Google Scholar]
  6. V.V. Buldygin and I.V. Kozachenko, volume 188 of Metric characterization of random variables and random processes. American Mathematical Society, Providence, Rhode Island (2000). [CrossRef] [Google Scholar]
  7. O. Catoni, PAC-Bayesian supervised classification: the thermodynamics of statistical learning. Vol. 56 of Monograph Series. Institute of Mathematical Statistics Lecture Notes (2007). [Google Scholar]
  8. M.C. Jones, Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages. Stat. Methodol. 6 (2009) 70–81. [Google Scholar]
  9. M.J. Kearns and L.K. Saul, Large deviation methods for approximate probabilistic inference. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence UAI1 (1998). [Google Scholar]
  10. S. Kotz and J.R. Van Dorp, Beyond Beta: Other Continuous Families of Distributions with Bounded Support and Applications. World Scientific, Singapore (2004). [CrossRef] [Google Scholar]
  11. P. Kumaraswamy, A generalized probability density function for double-bounded random processes. J. Hydrol. 46 (1980) 79–88. [NASA ADS] [CrossRef] [Google Scholar]
  12. O. Marchal and J. Arbel, On the sub-Gaussianity of the beta and Dirichlet distributions. Electr. Commun. Probab. 22 (2017). [Google Scholar]
  13. D.A. McAllester and L. Ortiz, Concentration inequalities for the missing mass and for histogram rule error. J. Mach. Learn. Res. 4 (2003) 895–911. [Google Scholar]
  14. H.D. Nguyen and G.J. McLachlan, Progress on a conjecture regarding the triangular distribution. Commun. Stat. Theory Methods 46 (2017) 11261–11271. [Google Scholar]
  15. M. Raginsky and I. Sason, Concentration of measure inequalities in information theory, communications, and coding. Found. Trends Commun. Inf. Theory 10 (2013) 1–246. [CrossRef] [Google Scholar]
  16. M. Rudelson and R. Vershynin, Non-asymptotic theory of random matrices: extreme singular values. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures. World Scientific, Singapore (2010) 1576–1602. [Google Scholar]
  17. E. Schlemm, The Kearns-Saul inequality for Bernoulli and Poisson-binomial distributions. J. Theoret. Probab. 29 (2016) 48–62. [CrossRef] [Google Scholar]
  18. R. van Handel, Probability in high dimension. Technical report, Princeton University, 2014. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.