Open Access
Volume 24, 2020
Page(s) 801 - 826
Published online 24 November 2020
  1. H.C.P. Berbee, Random walks with stationary increments and renewal theory. MC Tracts 112 (1979) 1–223. [Google Scholar]
  2. G. Biau, Analysis of a random forests model. J. Mach. Learn. Res. 13 (2012) 1063–1095. [Google Scholar]
  3. G. Biau and E. Scornet, A random forest guided tour. TEST 25 (2016) 197–227. [CrossRef] [Google Scholar]
  4. R.C. Bradley, Basic properties of strong mixing conditions. a survey and some open questions. Probab. Surv. 2 (2005) 107–144. [CrossRef] [MathSciNet] [Google Scholar]
  5. L. Breiman, Bagging predictors. Mach. Learn. 24 (1996) 123–140. [Google Scholar]
  6. L. Breiman, Random forests. Mach. Learn. 45 (2001) 5–32. [Google Scholar]
  7. L. Breiman, Consistency for a simple model of random forests. Technical report (2004). [Google Scholar]
  8. L. Breiman, J. Friedman, C.J. Stone and R.A. Olshen, Classification and Regression Trees. The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis, Oxford (1984). [Google Scholar]
  9. D.R. Cutler, T.C. Edwards, K.H. Beard, A. Cutler, K.T. Hess, J. Gibson and J.J. Lawler, Random forests for classification in ecology. Ecology 88 (2007) 2783–2792. [CrossRef] [PubMed] [Google Scholar]
  10. J. Dedecker, P. Doukhan, G. Lang, L.R.J. Rafael, S. Louhichi and C. Prieur, Weak dependence, in Weak Dependence: With Examples and Applications. Springer, Berlin (2007) 9–20. [CrossRef] [Google Scholar]
  11. G. Dudek, Short-term load forecasting using random forests, in Intelligent Systems’2014. Springer International Publishing, Cham (2015) 821–828. [Google Scholar]
  12. A. Fischer, L. Montuelle, M. Mougeot and D. Picard, Statistical learning for wind power: A modeling and stability study towards forecasting. Wind Energy 20 (2017) 2037–2047. [CrossRef] [Google Scholar]
  13. L. Györfi, M. Kohler, A. Krzyzak and H. Walk, A distribution-free theory of nonparametric regression. Springer Science & Business Media, Berlin (2006). [Google Scholar]
  14. M.J. Kane, N. Price, M. Scotch and P. Rabinowitz, Comparison of arima and random forest time series models for prediction of avian influenza h5n1 outbreaks. BMC Bioinform. 15 (2014) 276. [CrossRef] [Google Scholar]
  15. A. Lahouar and J. Ben Hadj Slama, Random forests model for one day ahead load forecasting, in IREC2015 The Sixth International Renewable Energy Congress (2015) 1–6. [Google Scholar]
  16. A.C. Lozano, S.R. Kulkarni and R.E. Schapire, Convergence and consistency of regularized boosting with weakly dependent observations. IEEE Trans. Inf. Theory 60 (2014) 651–660. [CrossRef] [Google Scholar]
  17. R. Meir, Nonparametric time series prediction through adaptive model selection. Mach. Learn. 39 (2000) 5–34. [CrossRef] [Google Scholar]
  18. L. Mentch and G. Hooker, Quantifying uncertainty in random forests via confidence intervals and hypothesis tests. J. Mach. Learn. Res. 17 (2016) 1–41. [Google Scholar]
  19. A.M. Prasad, L.R. Iverson and A. Liaw, Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9 (2006) 181–199. [CrossRef] [Google Scholar]
  20. E. Rio, Inequalities and limit theorems for weakly dependent sequences. Lecture (2013). [Google Scholar]
  21. E. Scornet, On the asymptotics of random forests. J. Multivar. Anal. 146 (2016) 72–83. [Google Scholar]
  22. E. Scornet, G. Biau and J.-P. Vert, Consistency of random forests. Ann. Stat. 43 (2015) 1716–1741. [Google Scholar]
  23. J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook and R. Moore, Real-time human pose recognition in parts from single depth images. Commun. ACM 56 (2013) 116–124. [CrossRef] [Google Scholar]
  24. V. Svetnik, A. Liaw, C. Tong, J.C. Culberson, R.P. Sheridan and B.P. Feuston, Random forest: a classification and regression tool for compound classification and qsar modeling. J. Chem. Inf. Comput. Sci. 43 (2003) 1947–1958. [CrossRef] [PubMed] [Google Scholar]
  25. S. Wager and S. Athey, Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113 (2018) 1228–1242. [CrossRef] [Google Scholar]
  26. B. Yu, Rates of convergence for empirical processes of stationary mixing sequences. Ann. Prob. 22 (1994) 94–116. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.