Open Access
Issue
ESAIM: PS
Volume 24, 2020
Page(s) 127 - 137
DOI https://doi.org/10.1051/ps/2019030
Published online 03 March 2020
  1. A. Asselah and F. Castell, Random walk in random scenery and self-intersection local times in dimensions d ≥ 5. Prob. Theory Relat. Fields 138 (2007) 1–32. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Berkes and W. Philipp, An almost sure invariance principle for the empirical distribution function of mixing random variables. Prob. Theory Relat. Fields 41 (1977) 115–137. [Google Scholar]
  3. P.J. Bickel and M.J. Wichura, Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 (1971) 1656–1670. [CrossRef] [MathSciNet] [Google Scholar]
  4. P. Billingsley, Convergence of probability measures. John Wiley & Sons (1999). [Google Scholar]
  5. E. Bolthausen, A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989) 108–115. [Google Scholar]
  6. A.N. Borodin, A limit theorem for sums of independent random variables defined on a recurrent random walk. Dokl. Akad. Nauk SSSR 246 (1979) 786–787. [Google Scholar]
  7. A.N. Borodin, Limit theorems for sums of independent random variables defined on a transient random walk. In Vol. 85 of Investigations in the theory of probability distributions, IV (1979) 17–29. [Google Scholar]
  8. P. Cabus and N. Guillotin-Plantard, Functional limit theorems for U-statistics indexed by a random walk. Stoch. Process. Appl. 101 (2002) 143–160. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Carlstein, Nonparametric change-point estimation. Ann. Stat. 16 (1988) 188–197. [Google Scholar]
  10. F. Castell and F. Pradeilles, Annealed large deviations for diffusions in a random Gaussian shear flow drift. Stoch. Process. Appl. 94 (2001) 171–197. [CrossRef] [Google Scholar]
  11. F. Castell, Moderate deviations for diffusions in a random Gaussian shear flow drift. Ann. Inst. Henri Poincaré 40 (2004) 337–366. [CrossRef] [Google Scholar]
  12. F. Castell, N. Guillotin-Plantard and F. Pène, Limit theorems for one and two-dimensional random walks in random scenery. Ann. Inst. Henri Poincaré 49 (2013) 506–528. [CrossRef] [Google Scholar]
  13. J. Černý, Moments and distribution of the local time of a two-dimensional random walk. Stoch. Process. Appl. 117 (2007) 262–270. [CrossRef] [Google Scholar]
  14. S. Cohen and C. Dombry, Convergence of dependent walks in a random scenery to fBm-local time fractional stable motions. J. Math. Kyoto Univ. 49 (2009) 267–286. [CrossRef] [Google Scholar]
  15. E. Csáki and P. Révész, Strong invariance for local times. Z. Wahrsch. Verw. Gebiete 62 (1983) 263–278. [CrossRef] [Google Scholar]
  16. E. Csáki, W. König and Z. Shi, An embedding for the Kesten-Spitzer random walk in random scenery. Stoch. Process. Appl. 82 (1999) 283–292. [CrossRef] [Google Scholar]
  17. J. Dedecker, H. Dehling and M.S. Taqqu, Weak convergence of the empirical process of intermittent maps in L2 under long-range dependence. Stoch. Dyn. 15 (2015) 1550008. [CrossRef] [Google Scholar]
  18. H. Dehling and M. Taqqu, The empirical process of some long-range dependent sequences with an application to U-statistics. Ann. Stat. 17 (1989) 1767–1783. [Google Scholar]
  19. G. Deligiannidis and S.A. Utev, Asymptotic variance of the self-intersections of stable random walks using Darboux-Wiener theory. Siber. Math. J. 52 (2011) 639–650. [CrossRef] [Google Scholar]
  20. F. Den Hollander and J.E. Steif, Random walk in random scenery: a survey of some recent results. Dynamics & Stochastics. In Vol. 48 of IMS Lect. Notes Monogr. Ser. (2006) 53–65. [CrossRef] [Google Scholar]
  21. B. Franke, F. Pene and M. Wendler, Stable limit theorem for U-statistic processes indexed by a random walk. Electr. Commun. Probab. 22 (2017). [Google Scholar]
  22. N. Gantert, W. König and Z. Shi, Annealed deviations of random walk in random scenery. Ann. Inst. Henri Poincaré Probab. Statist. 43 (2007) 47–76. [CrossRef] [Google Scholar]
  23. L. Giraitis, R. Leipus and D. Surgailis, The change-point problem for dependent observations. J. Statist. Plann. Inference 53 (1996) 297–310. [CrossRef] [Google Scholar]
  24. N. Guillotin-Plantard and V. Ladret, Limit theorems for U-statistics indexed by a one dimensional random walk. ESAIM: PS 9 (2005) 95–115. [Google Scholar]
  25. N. Guillotin-Plantard and J. Poisat, Quenched central limit theorems for random walks in random scenery. Stoch. Process. Appl. 123 (2013) 1348–1367. [CrossRef] [Google Scholar]
  26. N. Guillotin-Plantard and C. Prieur, Limit theorem for random walk in weakly dependent random scenery. Ann. Inst. Henri Poincaré Prob. Stat. 46 (2010) 1178–1194. [CrossRef] [Google Scholar]
  27. N. Guillotin-Plantard and C. Prieur, Central limit theorem for sampled sums of dependent random variables. ESAIM: PS 14 (2010) 299–314. [CrossRef] [EDP Sciences] [Google Scholar]
  28. N. Guillotin-Plantard and R.S. Dos Santos, The quenched limiting distributions of a charged-polymer model. Ann. Inst. Henri Poincaré Probab. Stat. 2 (2016) 703–725. [CrossRef] [Google Scholar]
  29. A. Inoue, Testing for distributional change in time series. Econometric theory 17 (2001) 156–187. [Google Scholar]
  30. H. Kesten and F. Spitzer, A limit theorem related to a new class of self similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979) 5–25. [CrossRef] [MathSciNet] [Google Scholar]
  31. J.C. Kiefer, Skorohod embedding of multivariate RV’s, and the sample DF. Z. Wahrsch. Verw. Gebiete 24 (1979) 1–35. [CrossRef] [Google Scholar]
  32. D. Khoshnevisan and T.M. Lewis, A law of iterated logarithm for stable processes in random scenery. Stoch. Process. Appl. 74 (1998) 89–121. [CrossRef] [Google Scholar]
  33. D.W. Müller, On Glivenko-Cantelli convergence. Z. Wahrsch. Verw. Gebiete 16 (1970) 195–210. [CrossRef] [Google Scholar]
  34. F. Spitzer, Principles of random walks. Vol. 34 of Graduate Texts Math. Springer-Verlag (1976). [Google Scholar]
  35. J. Tewes, Change-point tests under local alternatives for long-range dependent processes. Electr. J. Stat. 11 (2017) 2461–2498. [CrossRef] [Google Scholar]
  36. M. Wendler, The sequential empirical process of a random walk in random scenery. Stoch. Process. Appl. 126 (2016) 2787–2799. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.