Free Access
Issue
ESAIM: PS
Volume 23, 2019
Page(s) 310 - 337
DOI https://doi.org/10.1051/ps/2018021
Published online 17 June 2019
  1. F. Bach and E. Moulines, E. Moulines, and F. Bach, Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning, in Vol. 24 of Advances in Neural Information Processing Systems, edited by J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, K.Q. Weinberger, Curran Associates, Inc. (2011) 451–459. [Google Scholar]
  2. R. Bekkerman, M. Bilenko and J. Langford, Scaling Up Machine Learning. Cambridge University Press, Cambridge (2011). [CrossRef] [Google Scholar]
  3. Y. Berger, Rate of convergence to normal distribution for the Horvitz-Thompson estimator. J. Stat. Plan. Inference 67 (1998) 209–226. [Google Scholar]
  4. Y. Berger, Asymptotic consistency under large entropy sampling designs with unequal probabilities. Pak. J. Stat. 27 (2011) 407–426. [Google Scholar]
  5. P. Bertail, E. Chautru and S. Clémençon, Empirical processes in survey sampling with (conditional) Poisson designs. Scand. J. Stat. 44 (2017) 97–111. [CrossRef] [Google Scholar]
  6. D. Bertsekas, Convex Analysis and Optimization. Athena Scientific, NH (2003). [Google Scholar]
  7. P. Bianchi, S. Clémençon, J. Jakubowicz and G. Moral-Adell, On-Line Learning Gossip Algorithm in Multi-Agent Systems with Local Decision Rules, in 2013 IEEE International Conference on Big Data (BIG DATA) (2014) 6–14. [Google Scholar]
  8. P. Bickel, C. Klaassen, Y. Ritov and J. Wellner, Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins University Press, Baltimore (1993). [Google Scholar]
  9. V. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, Cambridge (2008). [CrossRef] [Google Scholar]
  10. L. Bottou, Online Algorithms and Stochastic Approximations: Online Learning and Neural Networks. Cambridge University Press, Cambridge (1998). [Google Scholar]
  11. L. Bottou and O. Bousquet, The tradeoffs of large scale learning. Adv. Neural Inf. Process. Syst. 20 (2008) 161–168. [Google Scholar]
  12. S. Boucheron, O. Bousquet and G. Lugosi, Theory of classification: a survey of some recent advances. ESAIM: PS 9 (2005) 323–375. [CrossRef] [EDP Sciences] [Google Scholar]
  13. N. Breslow and J. Wellner, Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression. Scand. J. Stat. 35 (2007) 186–192. [CrossRef] [Google Scholar]
  14. N. Breslow and J. Wellner, A Z-theorem with estimated nuisance parameters and correction note for “Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression”. Scand. J. Stat. 35 (2008) 186–192. [Google Scholar]
  15. N. Breslow, T. Lumley, C. Ballantyne, L. Chambless and M. Kulich, Improved Horvitz-Thompson estimation of model parameters from two-phase stratified samples: applications in epidemiology. Stat. Biosci. 1 (2009) 32–49. [CrossRef] [PubMed] [Google Scholar]
  16. S. Clémençon, S. Robbiano and J. Tressou, Maximal Deviations of Incomplete U-statistics with Applications to Empirical Risk Sampling, in Proceedings of the 2013 SIAM International Conference on Data Mining (2013) 19–27. [Google Scholar]
  17. S. Clémençon, A. Bellet and I. Colin, Scaling-up empirical risk minimization: optimization of incomplete U-statistics. J. Mach. Learn. Res. 17 (2016) 1–36. [Google Scholar]
  18. W. Cochran, Sampling Techniques. Wiley, NY (1977). [Google Scholar]
  19. B. Delyon, Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory, 2000. Available at: http://perso.univ-rennes1.fr/bernard.delyon/. [Google Scholar]
  20. J. Deville, Réplications d’échantillons, demi-échantillons, Jackknife, bootstrap dans, Les Sondages, edited by J.-J. Droesbeke, Ph. Tassi, B. Fichet. Economica (1987). [Google Scholar]
  21. J. Deville and C. Särndal, Calibration estimators in survey sampling. J. Acoust. Soc. Amer. 87 (1992) 376–382. [Google Scholar]
  22. L. Devroye, L. Györfi and G. Lugosi, A Probabilistic Theory of Pattern Recognition. Springer, New York (1996). [CrossRef] [Google Scholar]
  23. R. Gill, Y. Vardi and J. Wellner, Large sample theory of empirical distributions in biased sampling models. Ann. Stat. 16 (1988) 1069–1112. [Google Scholar]
  24. J. Hajek, Asymptotic theory of rejective sampling with varying probabilities from a finite population. Ann. Math. Stat. 35 (1964) 1491–1523. [CrossRef] [Google Scholar]
  25. D. Horvitz and D. Thompson, A generalization of sampling without replacement from a finite universe. J. Acoust. Soc. Amer. 47 (1951) 663–685. [Google Scholar]
  26. V. Koltchinskii, Local Rademacher complexities and oracle inequalities in risk minimization (with discussion). Ann. Stat. 34 (2006) 2593–2706. [Google Scholar]
  27. H. Kushner and G. Yin, Stochastic Approximation and Recursive Algorithms and Applications. Springer, New York (2010). [Google Scholar]
  28. G. Mateos, J. Bazerque and G. Giannakis, Distributed sparse linear regression. IEEE Trans. Signal Process. 58 (2010) 5262–5276. [Google Scholar]
  29. A. Navia-Vazquez, D. Gutierrez-Gonzalez, E. Parrado-Hernandez and J. Navarro-Abellan, Distributed support vector machines. IEEE Trans. Neural Netw. 17 (2006) 1091–1097. [Google Scholar]
  30. A. Nemirovski, A. Juditsky, G. Lan and A. Shapiro, Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19 (2009) 1574–1609. [Google Scholar]
  31. Y. Nesterov, Introductory lectures on convex optimization: a basic course, in Applied Optimization. Kluwer Academic Publ., Boston, Dordrecht, London (2004). [CrossRef] [Google Scholar]
  32. M. Pelletier, Weak convergence rates for stochastic approximation with application to multiple targets and simulated annealing. Ann. Appl. Probab. 8 (1998) 10–44. [Google Scholar]
  33. P. Robinson, On the convergence of the Horvitz-Thompson estimator. Aust. J. Stat. 24 (1982) 234–238. [Google Scholar]
  34. P. Rosen, Asymptotic theory for successive sampling. AMS J. 43 (1972) 373–397. [Google Scholar]
  35. T. Saegusa and J. Wellner, Weighted likelihood estimation under two-phase sampling. Ann. Statist. 41 (2013) 269–295. [CrossRef] [Google Scholar]
  36. S. van de Geer, Empirical Processes in M-Estimation. Cambridge University Press, Cambridge (2000). [Google Scholar]
  37. A. Van der Vaart, Asymptotic Statistics. Vol. 3, Cambridge University Press, Cambridge (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.