Open Access
Volume 23, 2019
Page(s) 464 - 491
Published online 07 August 2019
  1. D. Bachmann and H. Dette, A note on the the Bickel-Rosenblatt test in autoregressive time series. Stat. Probab. Lett. 74 (2005) 221–234. [Google Scholar]
  2. B. Bercu and F. Proïa, A sharp analysis on the asymptotic behavior of the Durbin-Watson statistic for the first-order autoregressive process. ESAIM: PS 17 (2013) 500–530. [CrossRef] [EDP Sciences] [Google Scholar]
  3. P. J. Bickel and M. Rosenblatt, On some global measures of the deviations of density function estimates. Ann. Stat. 1 (1973) 1071–1095. [Google Scholar]
  4. P. Billingsley, Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics. 2nd edn. John Wiley & Sons Inc., New York (1999). [CrossRef] [Google Scholar]
  5. P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods. Springer Series in Statistics. Springer, New York (2006). [Google Scholar]
  6. N. H. Chan and C.Z. Wei, Limiting distributions of least squares estimates of unstable autoregressive processes. Ann. Stat. 16 (1988) 367–401. [Google Scholar]
  7. J. Dedecker and E. Rio. On the functional central limit theorem for stationary processes. Ann. Inst. Henri Poincaré, B. 36 (2000) 1–34. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Duflo, Random iterative models, in Vol. 34 of Applications of Mathematics. Springer-Verlag, Berlin, New York (1997). [Google Scholar]
  9. Y. Fan, Testing the goodness of fit of a parametric density function by kernel method. Econom. Theory 10 (1994) 316–356. [CrossRef] [MathSciNet] [Google Scholar]
  10. B.K. Ghosh and W.M. Huang, The power and optimal kernel of the Bickel-Rosenblatt test for goodness of fit. Ann. Stat. 19 (1991) 999–1009. [Google Scholar]
  11. L. Horváth and R. Zitikis, Asymptotics of the Lp-norms of density estimators in the first-order autoregressive models. Stat. Probab. Lett. 66 (2004) 91–103. [Google Scholar]
  12. T.L. Lai and C.Z. Wei, Asymptotic properties of general autoregressive models and strong consistency of least-squares estimates of their parameters. J. Multivariate Anal. 13 (1983) 1–23. [CrossRef] [Google Scholar]
  13. S. Lee and S. Na, On the Bickel-Rosenblatt test for first-order autoregressive models. Stat. Probab. Lett. 56 (2002) 23–35. [Google Scholar]
  14. S. Lee and C.Z. Wei, On residual empirical processes of stochastic regression models with applications to time series. Ann. Stat. 27 (1999) 237–261. [Google Scholar]
  15. M.H. Neumann and E. Paparoditis, On bootstrapping L2-type statistics in density testing. Stat. Probab. Lett. 50 (2000) 137–147. [Google Scholar]
  16. E. Parzen, On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962) 1065–1076. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Proïa, Further results on the H-Test of Durbin for stable autoregressive processes. J. Multivariate Anal. 118 (2013) 77–101. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Rosenblatt, Remark on some nonparametric estimates of a density function. Ann. Math. Stat. 27 (1956) 832–837. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Rosenblatt, A quadratic measure of deviation of two-dimensional density estimates and a test of independence. Ann. Stat. 3 (1975) 1–14. [Google Scholar]
  20. A.V. Skorokhod, Limit theorems for stochastic processes. Theory Probab. Appl. 1 (1956) 261–290. [Google Scholar]
  21. B.P. Stigum, Asymptotic properties of dynamic stochastic parameter estimates (III). J. Multivariate Anal. 4 (1974) 351–381. [CrossRef] [Google Scholar]
  22. H. Takahata and K.I. Yoshihara, Central limit theorems for integrated square error of nonparametric density estimators based on absolutely regular random sequences. Yokohama Math. J. 35 (1987) 95–111. [Google Scholar]
  23. J. Valeinis and A. Locmelis, Bickel-Rosenblatt test for weakly dependent data. Math. Model. Anal. 17 (2012) 383–395. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.