Free Access
Issue
ESAIM: PS
Volume 21, 2017
Page(s) 350 - 368
DOI https://doi.org/10.1051/ps/2017012
Published online 12 December 2017
  1. F. Chaabane, Version forte du théorème de la limite centrale fonctionnel pour les martingales. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 195–198. [Google Scholar]
  2. W. Feller, An introduction to probability theory and its applications. Vol. II. 2nd edition. John Wiley and Sons, Inc., New York London Sydney (1971). [Google Scholar]
  3. P.W. Glynn and S.P. Meyn, A Liapounov bound for solutions of the Poisson equation. Ann. Probab. 24 (1996) 916–931. [Google Scholar]
  4. P. Hall and C.C. Heyde, Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). [Google Scholar]
  5. U. Krengel,Ergodic theorems. With a supplement by Antoine Brunel. Vol. 6 of de Gruyter Studies in Mathematics. Walter de Gruyter and Co., Berlin (1985). [Google Scholar]
  6. J.P. Leguesdron, Marche aléatoire sur le semi-groupe des contractions de . Cas de la marche aléatoire sur avec choc élastique en zéro. Ann. Inst. Henri Poincaré Probab. Statist. 25 (1989) 483–502. [Google Scholar]
  7. S.P. Meyn and R.L. Tweedie,Markov chains and stochastic stability. Communications and Control Engineering Series. Springer Verlag London Ltd., London (1993). [Google Scholar]
  8. M. Peigné and W. Woess, On recurrence of reflected random walk on the half-line. With an appendix on results of Martin Benda. Preprint arXiv:math/0612306 (2006). [Google Scholar]
  9. F. Spitzer, Principles of random walk. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N.J. Toronto London (1964). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.