Free Access
Volume 21, 2017
Page(s) 183 - 200
Published online 19 October 2017
  1. S. Aulbach, M. Falk and M. Hofmann, The multivariate piecing-together approach revisited. Special Issue on Copula Modeling and Dependence. J. Multivariate Anal. 110 (2012) 161–170. [CrossRef] [Google Scholar]
  2. N.H. Bingham, C.M. Goldie and J.L. Teugels, vol. 27 of Regular variation. Cambridge university press (1989). [Google Scholar]
  3. M. Binois, D. Rullière and O. Roustant, On the estimation of pareto fronts from the point of view of copula theory. Infor. Sci. 324 (2015) 270–285. [CrossRef] [Google Scholar]
  4. E.C. Brechmann, Hierarchical kendall copulas: Properties and inference. Canadian J. Statist. 42 (2014) 78–108. [CrossRef] [Google Scholar]
  5. A. Charpentier and J. Segers, Lower tail dependence for Archimedean copulas: characterizations and pitfalls. Insur. Math. Econ. 40 (2007) 525–532. [CrossRef] [Google Scholar]
  6. A. Charpentier and J. Segers, Tails of multivariate Archimedean copulas. J. Multivar. Anal. 100 (2009) 1521–1537. [CrossRef] [Google Scholar]
  7. K.C. Cheung, Upper comonotonicity. Insur. Math. Econ. 45 (2009) 35–40. [CrossRef] [Google Scholar]
  8. A. Cousin and E.D. Bernardino, On multivariate extensions of value-at-risk. J. Multivar. Anal. 119 (2013) 32–46. [CrossRef] [Google Scholar]
  9. L. de Haan and A. Ferreira, Extreme Value Theory. An Introduction. Springer Series in Operations Research and Financial Engineering. (2006). [Google Scholar]
  10. G. De Luca and G. Rivieccio, Multivariate tail dependence coefficients for Archimedean copulae. In Advanced Statistical Methods for the Analysis of Large Data-Sets. Springer (2012) 287–296. [Google Scholar]
  11. E. Di Bernardino and D. Rullière, Distortions of multivariate distribution functions and associated level curves: Applications in multivariate risk theory. Insur. Math. Econ. 53 (2013a) 190–205. [CrossRef] [Google Scholar]
  12. E. Di Bernardino and D. Rullière, On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators. Dependence Model. 1 (2013b) 1–36. [CrossRef] [Google Scholar]
  13. E. Di Bernardino and D. Rullière, Estimation of multivariate critical layers: Applications to rainfall data. J. Soc. Française Stat. 156 (2015) 11–50. [Google Scholar]
  14. E. Di Bernardino and D. Rullière, On tail dependence coefficients of transformed multivariate Archimedean copulas. Fuzzy Sets Syst. 284 (2016) 89–112. [CrossRef] [Google Scholar]
  15. D.S. Dimitrova, V.K. Kaishev and S.I. Penev, Ged spline estimation of multivariate Archimedean copulas. Comput. Stat. Data Anal. 52 (2008) 3570–3582. [CrossRef] [Google Scholar]
  16. F. Durante, J. Fernàndez−Sànchez andR. Pappadà, Copulas, diagonals, and tail dependence. Fuzzy Sets Syst. 264 (2015) 22–41. [CrossRef] [Google Scholar]
  17. F. Durante, J.F. Sànchez and C. Sempi, Multivariate patchwork copulas: A unified approach with applications to partial comonotonicity. Insurance: Math. Econ. 53 (2013) 897–905. [CrossRef] [Google Scholar]
  18. V. Durrleman, A. Nikeghbali and T. Roncalli, A simple transformation of copulas. Technical report, Groupe de Research Operationnelle Credit Lyonnais (2000). [Google Scholar]
  19. C. Genest, K. Ghoudi and L.-P. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995) 543–552. [CrossRef] [Google Scholar]
  20. C. Genest, J. Neslehovà and J. Ziegel, Inference in multivariate Archimedean copula models. TEST 20 (2011) 223–256. [CrossRef] [Google Scholar]
  21. C. Genest and L.-P. Rivest, Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 88 1034–1043. [Google Scholar]
  22. M. Hofert, Sampling Archimedean copulas. Comput. Statist. Data Anal. 52 (2008) 5163–5174. [CrossRef] [Google Scholar]
  23. M. Hofert, Construction and sampling of nested Archimedean copulas. In Copula Theory and Its Applications, P. Jaworski, F. Durante, W. Härdle and T. Rychlik. Springer, Berlin (2010). [Google Scholar]
  24. A. Juri and M.V. Wüthrich, Tail dependence from a distributional point of view. Extremes 6 (2003) 213–246. [CrossRef] [Google Scholar]
  25. G. Kim, M.J. Silvapulle and P. Silvapulle, Comparison of semiparametric and parametric methods for estimating copulas. Comput. Stat. Data Anal. 51 (2007) 2836–2850. [CrossRef] [Google Scholar]
  26. E.P. Klement, R. Mesiar and E. Pap, Transformations of copulas. Kybernetika (Prague) 41 (2005) 425–434. [Google Scholar]
  27. P. Lambert, Archimedean copula estimation using bayesian splines smoothing techniques. Comput. Stat. Data Anal. 51 (2007) 6307–6320. [CrossRef] [Google Scholar]
  28. H. Li, Orthant tail dependence of multivariate extreme value distributions. J. Multivar. Anal. 100 (2009) 243–256. [CrossRef] [Google Scholar]
  29. A. McNeil, Sampling nested Archimedean copulas. J. Stat. Comput. Simulat. (2008) 567–581. [Google Scholar]
  30. A. McNeil and J. Nešlehová, Multivariate Archimedean copulas, d-monotone functions and l1 −norm symmetric distributions. Ann. Statist. 37 (2009) 3059–3097. [CrossRef] [Google Scholar]
  31. P.M. Morillas, A method to obtain new copulas from a given one. Metrika 61 (2005) 169–184. [CrossRef] [Google Scholar]
  32. R.B. Nelsen, An introduction to copulas. Vol. 139 of Lect. Notes Statist. Springer Verlag, New York (1999). [Google Scholar]
  33. R. Schmidt and U. Stadtmüller, Non-parametric estimation of tail dependence. Scand. J. Stat. Theory Appl. 33 (2006) 307–335. [CrossRef] [Google Scholar]
  34. K.F. Siburg and P.A. Stoimenov, Gluing copulas. Commun. Stat., Theory Methods 37 (2008) 3124–3134. [CrossRef] [Google Scholar]
  35. E. Valdez and Y. Xiao, On the distortion of a copula and its margins. Scand. Actuar. J. 4 (2011) 292–317. [CrossRef] [Google Scholar]
  36. G. Venter, Tails of copulas. In Proceedings ASTIN Washington (2001) 68–113. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.