Free Access
Issue
ESAIM: PS
Volume 21, 2017
Page(s) 183 - 200
DOI https://doi.org/10.1051/ps/2017003
Published online 19 October 2017
  1. S. Aulbach, M. Falk and M. Hofmann, The multivariate piecing-together approach revisited. Special Issue on Copula Modeling and Dependence. J. Multivariate Anal. 110 (2012) 161–170. [CrossRef]
  2. N.H. Bingham, C.M. Goldie and J.L. Teugels, vol. 27 of Regular variation. Cambridge university press (1989).
  3. M. Binois, D. Rullière and O. Roustant, On the estimation of pareto fronts from the point of view of copula theory. Infor. Sci. 324 (2015) 270–285. [CrossRef]
  4. E.C. Brechmann, Hierarchical kendall copulas: Properties and inference. Canadian J. Statist. 42 (2014) 78–108. [CrossRef]
  5. A. Charpentier and J. Segers, Lower tail dependence for Archimedean copulas: characterizations and pitfalls. Insur. Math. Econ. 40 (2007) 525–532. [CrossRef]
  6. A. Charpentier and J. Segers, Tails of multivariate Archimedean copulas. J. Multivar. Anal. 100 (2009) 1521–1537. [CrossRef]
  7. K.C. Cheung, Upper comonotonicity. Insur. Math. Econ. 45 (2009) 35–40. [CrossRef]
  8. A. Cousin and E.D. Bernardino, On multivariate extensions of value-at-risk. J. Multivar. Anal. 119 (2013) 32–46. [CrossRef]
  9. L. de Haan and A. Ferreira, Extreme Value Theory. An Introduction. Springer Series in Operations Research and Financial Engineering. (2006).
  10. G. De Luca and G. Rivieccio, Multivariate tail dependence coefficients for Archimedean copulae. In Advanced Statistical Methods for the Analysis of Large Data-Sets. Springer (2012) 287–296.
  11. E. Di Bernardino and D. Rullière, Distortions of multivariate distribution functions and associated level curves: Applications in multivariate risk theory. Insur. Math. Econ. 53 (2013a) 190–205. [CrossRef]
  12. E. Di Bernardino and D. Rullière, On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators. Dependence Model. 1 (2013b) 1–36. [CrossRef]
  13. E. Di Bernardino and D. Rullière, Estimation of multivariate critical layers: Applications to rainfall data. J. Soc. Française Stat. 156 (2015) 11–50.
  14. E. Di Bernardino and D. Rullière, On tail dependence coefficients of transformed multivariate Archimedean copulas. Fuzzy Sets Syst. 284 (2016) 89–112. [CrossRef]
  15. D.S. Dimitrova, V.K. Kaishev and S.I. Penev, Ged spline estimation of multivariate Archimedean copulas. Comput. Stat. Data Anal. 52 (2008) 3570–3582. [CrossRef]
  16. F. Durante, J. Fernàndez−Sànchez andR. Pappadà, Copulas, diagonals, and tail dependence. Fuzzy Sets Syst. 264 (2015) 22–41. [CrossRef]
  17. F. Durante, J.F. Sànchez and C. Sempi, Multivariate patchwork copulas: A unified approach with applications to partial comonotonicity. Insurance: Math. Econ. 53 (2013) 897–905. [CrossRef]
  18. V. Durrleman, A. Nikeghbali and T. Roncalli, A simple transformation of copulas. Technical report, Groupe de Research Operationnelle Credit Lyonnais (2000).
  19. C. Genest, K. Ghoudi and L.-P. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995) 543–552. [CrossRef]
  20. C. Genest, J. Neslehovà and J. Ziegel, Inference in multivariate Archimedean copula models. TEST 20 (2011) 223–256. [CrossRef]
  21. C. Genest and L.-P. Rivest, Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 88 1034–1043.
  22. M. Hofert, Sampling Archimedean copulas. Comput. Statist. Data Anal. 52 (2008) 5163–5174. [CrossRef]
  23. M. Hofert, Construction and sampling of nested Archimedean copulas. In Copula Theory and Its Applications, P. Jaworski, F. Durante, W. Härdle and T. Rychlik. Springer, Berlin (2010).
  24. A. Juri and M.V. Wüthrich, Tail dependence from a distributional point of view. Extremes 6 (2003) 213–246. [CrossRef]
  25. G. Kim, M.J. Silvapulle and P. Silvapulle, Comparison of semiparametric and parametric methods for estimating copulas. Comput. Stat. Data Anal. 51 (2007) 2836–2850. [CrossRef]
  26. E.P. Klement, R. Mesiar and E. Pap, Transformations of copulas. Kybernetika (Prague) 41 (2005) 425–434.
  27. P. Lambert, Archimedean copula estimation using bayesian splines smoothing techniques. Comput. Stat. Data Anal. 51 (2007) 6307–6320. [CrossRef]
  28. H. Li, Orthant tail dependence of multivariate extreme value distributions. J. Multivar. Anal. 100 (2009) 243–256. [CrossRef]
  29. A. McNeil, Sampling nested Archimedean copulas. J. Stat. Comput. Simulat. (2008) 567–581.
  30. A. McNeil and J. Nešlehová, Multivariate Archimedean copulas, d-monotone functions and l1 −norm symmetric distributions. Ann. Statist. 37 (2009) 3059–3097. [CrossRef]
  31. P.M. Morillas, A method to obtain new copulas from a given one. Metrika 61 (2005) 169–184. [CrossRef]
  32. R.B. Nelsen, An introduction to copulas. Vol. 139 of Lect. Notes Statist. Springer Verlag, New York (1999).
  33. R. Schmidt and U. Stadtmüller, Non-parametric estimation of tail dependence. Scand. J. Stat. Theory Appl. 33 (2006) 307–335. [CrossRef]
  34. K.F. Siburg and P.A. Stoimenov, Gluing copulas. Commun. Stat., Theory Methods 37 (2008) 3124–3134. [CrossRef]
  35. E. Valdez and Y. Xiao, On the distortion of a copula and its margins. Scand. Actuar. J. 4 (2011) 292–317. [CrossRef]
  36. G. Venter, Tails of copulas. In Proceedings ASTIN Washington (2001) 68–113.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.