Free Access
Issue
ESAIM: PS
Volume 21, 2017
Page(s) 394 - 411
DOI https://doi.org/10.1051/ps/2017017
Published online 08 January 2018
  1. R. Arora, W. Sethares and J. Bucklew, Latent periodicities in genome sequences. IEEE J. Selected Topics Signal Proc. 2 (2008) 332–342. [CrossRef] [Google Scholar]
  2. I.V. Basawa and R.B. Lund, Recursive prediction and likelihood evaluation for periodic ARMA models. J. Time Ser. Ana. 21 (2000) 75–93. [CrossRef] [Google Scholar]
  3. I.V. Basawa and R.B. Lund, Large sample properties of parameter for periodic ARMA models. J. Time Ser. Anal. 21 (2001) 75–93. [Google Scholar]
  4. A. Bibi and I. Lescheb, A note on integrated periodic GARCH processes. Statist. Probab. Lett. 87 (2014) 121–124. [CrossRef] [Google Scholar]
  5. E. Broszkiewicz-Suwaj, A. Makagon, R. Weron and A. Wyłomańska, On detecting and modeling periodic correlation in financial data. Proceedings of the XVIII Max Born Symposium. Phys. A: Statist. Mech. Appl. 336 (2004) 196–205. [CrossRef] [Google Scholar]
  6. E. Carlstein, The use of subseries values for estimating the variance of a general statistics from a stationary sequence. Ann. Statist. 14 (1986) 1171–1179. [CrossRef] [MathSciNet] [Google Scholar]
  7. V. Chan, S.N. Lahiri and W.Q. Meeker, Block bootstrap estimation of the distribution of cumulative outdoor degradation. Technometrics 46 (2004) 215–224. [Google Scholar]
  8. J. Dowell, S. Weiss, D. Hill and D. Infield, A cyclo-stationary complex multichannel Wiener filter for the prediction of wind speed and direction. Proc. 21st Europ. Signal Proc. Confer. (EUSIPCO 2013). [Google Scholar]
  9. A.E. Dudek, J. Leśkow, E. Paparoditis and D. Politis, A generalized block bootstrap for seasonal time series. J. Time Ser. Anal. 35 (2014) 89–114. [Google Scholar]
  10. W. Gardner and L.E. Franks, Characterization of cyclostationary random signal processes. IEEE Trans. Inform. Theory 21 (1975) 4–14. [CrossRef] [Google Scholar]
  11. C. Gaucherel, Analysis of ENSO interannual oscillations using non-stationary quasi-periodic statistics. A study of ENSO memory. Int. J. Climatology 30 (2010) 926–934. [Google Scholar]
  12. F. Ghaderi, K. Nazarpour, J.G. McWhirter and S. Sanei, Removal of ballistocardiogram artifacts using the cyclostationary source extraction method. IEEE Trans. Biomed. Eng. 57 (2010) 2667–2676. [Google Scholar]
  13. E.G. Gladyšhev, Periodically correlated random sequences. Soviet Math. 2 (1961) 385–388. [Google Scholar]
  14. P. Hall, Resampling a coverage pattern. Stoch. Process. Appl. 20 (1985) 231–246. [CrossRef] [Google Scholar]
  15. P. Hall, The Bootstrap and Edgeworth Expansion. New York: Springer Verlag (1992). [Google Scholar]
  16. J.D. Hamilton, Time Series Anal. New Jersey, Princeton University Press (1994). [Google Scholar]
  17. B. Iqelan, Periodically Correlated Time Series: Models and Examples. Lambert Academic Publishing (2011). [Google Scholar]
  18. R.H. Jones and W.M. Brelsford, Time series with periodic structure. Biometrika 54 (1967) 403–408. [CrossRef] [PubMed] [Google Scholar]
  19. K.-Y. Kim, B. Hamlington and H. Na, Theoretical foundation of cyclostationary EOF analysis for geophysical and climatic variables. Concepts and examples. Earth-Sci. Rev. 150 (2015) 201–218. [CrossRef] [Google Scholar]
  20. J. Kreiss and S. Lahiri, Bootstrap Methods for Time Series. Time Ser. Anal.: Methods Appl. 30 (2012) 3–23. [Google Scholar]
  21. H. Künsch, The jackknife and the bootstrap for general stationary observations. Ann. Statist. 17 (1989) 1217–1241. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. Lahiri, Resampling methods for Dependent Data. Springer Verlag (2003). [Google Scholar]
  23. R. Liu, Bootstrap Procedures under some Non-I.I.D. Models. Ann. Statist. 164 (1988) 1696–1708. [CrossRef] [Google Scholar]
  24. R.Y. Liu and K. Singh, Moving blocks jackknife and bootstrap capture weak dependence. Exploring the Limits of Bootstrap, edited by R. LePage and L. Billard. Wiley New York (1992) 225–248. [Google Scholar]
  25. S. Maiz, El. Badaoui, F. Bonnardot and C. Serviere, New second order cyclostationary analysis and application to the detection and characterization of a runner’s fatigue. Signal Processing 102 (2014) 188–200. [Google Scholar]
  26. A.S. Monin, Stationary and periodic time series in the general circulation of the atmosphere, in: Proc. Symp. Time Ser. Anal., edited by M. Rosenblatt. John Wiley and Sons, New York (1963) 144–151. [Google Scholar]
  27. M. Pagano, On periodic and multiple autoregressions. Ann. Statist. 6 (1978) 1310–1317. [CrossRef] [Google Scholar]
  28. E. Parzen and M. Pagano, An approach to modeling seasonally stationary time series. J. Econom. 9 (1979) 137–153. [Google Scholar]
  29. D.N. Politis, Resampling time series with seasonal components, in Frontiers in Data Mining and Bioinformatics: Proceedings of the 33rd Symposium on the Interface of Computing Science and Statistics, Orange County, California 13-17 (2001) 619–621. [Google Scholar]
  30. Q. Shao and P.P. Ni, Least-squares estimation and ANOVA for periodic autoregressive time series. Statist. Probab. Lett. 69 (2004) 287–297. [CrossRef] [Google Scholar]
  31. K. Shimizu, Boostrapping stationary ARMA-GARCH Models. ViewegTeubner Research (2009). [Google Scholar]
  32. G.B. Thomas and D.F. Fiering, Mathematical synthesis of streamflow sequences for the analysis of river basins by simulation, in: Design of Water Resources Syst., edited by A. Maas. Harvard University Press, Cambridge (1962). [Google Scholar]
  33. E. Ursu and P. Duchesne, On modelling and diagnostic checking of vector periodic autoregressive time series models. J. Time Seri. Anal. 30 (2009) 70–96. [CrossRef] [Google Scholar]
  34. A. Vecchia, Maximum Likelihood Estimation for Periodic Autoregressive Moving Average Models. Technometrics 27 (1985) 375–384. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.