Free Access
Issue |
ESAIM: PS
Volume 20, 2016
|
|
---|---|---|
Page(s) | 417 - 431 | |
DOI | https://doi.org/10.1051/ps/2016021 | |
Published online | 30 November 2016 |
- B. Bassan and E. Bona, Moments of stochastic processes governed by Poisson random measures. Comment. Math. Univ. Carolin. 31 (1990) 337–343. [MathSciNet] [Google Scholar]
- H. Biermé, Y. Demichel and A. Estrade, Fractional Poisson field on a finite set. Preprint hal-00597722 (2011). [Google Scholar]
- H. Biermé and A. Desolneux, Crossings of smooth shot noise processes. Ann. Appl. Probab. 22 (2012) 2240–2281. [CrossRef] [MathSciNet] [Google Scholar]
- H. Biermé, A. Estrade and I. Kaj, Self-similar random fields and rescaled random balls models. J. Theoret. Probab. 23 (2010) 1110–1141. [CrossRef] [MathSciNet] [Google Scholar]
- J.-C. Breton and C. Dombry, Rescaled weighted random ball models and stable self-similar random fields. Stochastic Process. Appl. 119 (2009) 3633–3652. [Google Scholar]
- Y. Demichel, Piling of multiscale random models. Preprint hal-00474214 (2010). [Google Scholar]
- I. Flint, X. Lu, N. Privault, D. Niyato and P. Wang, Performance analysis of ambient RF energy harvesting: A stochastic geometry approach. In IEEE Global Commun. Conf. GLOBECOM (2014) 1448–1453. [Google Scholar]
- R. Gobard, Random balls model with dependence. J. Math. Anal. Appl. 423 (2015) 1284–1310. [CrossRef] [MathSciNet] [Google Scholar]
- H.-B. Kong, I. Flint, D. Niyato and N. Privault, On the performance of wireless energy harvesting networks in a Boolean-Poisson model. In IEEE Green Commun. Syst. Networks Conf. ICC 2016 (2016). [Google Scholar]
- J. Mecke, Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitstheorie Verw. Geb. 9 (1967) 36–58. [CrossRef] [Google Scholar]
- N. Privault, Moments of Poisson stochastic integrals with random integrands. Probab. Math. Stat. 32 (2012) 227–239. [Google Scholar]
- N. Privault, Combinatorics of Poisson stochastic integrals with random integrands. In Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Itô Chaos Expansions and Stochastic Geometry. Vol. 7 of Bocconi & Springer Series, edited by G. Peccati and M. Reitzner. Springer, Berlin (2016) 37–80. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.