Free Access
Volume 20, 2016
Page(s) 367 - 399
Published online 23 November 2016
  1. T.M. Apostol, Introduction to Analytic Number Theory. Springer-Verlag, New York (1976). [Google Scholar]
  2. A.D. Barbour, L. Holst and S. Janson, Poisson Approximation, Oxford Studies in Probability – 2. Clarendon Press, Oxford (1992). [Google Scholar]
  3. C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer-Verlag, New York (1999). [Google Scholar]
  4. A. Boneh and M. Hofri, The Coupon Collector Problem Revisited–a Survey of Engineering Problems and Computational Methods. Commun. Stat. Stochastic Models 13 (1997) 39–66. [CrossRef] [Google Scholar]
  5. S. Boneh and V.G. Papanicolaou, General Asymptotic Estimates for the Coupon Collector Problem. J. Comput. Appl. Math. 67 (1996) 277–289. [CrossRef] [MathSciNet] [Google Scholar]
  6. R.K. Brayton, On the asymptotic behavior of the number of trials necessary to complete a set with random selection. J. Math. Anal. Appl. 7 (1963) 31–61. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Diaconis and S. Holmes, A Bayesian peek into Feller volume I, Special issue in memory of D. Basu. Sankhyā Ser. A 64 (2002) 820–841. [MathSciNet] [Google Scholar]
  8. A.V. Doumas and V.G. Papanicolaou, The Coupon Collector’s Problem Revisited: Asymptotics of the Variance. Adv. Appl. Prob. 44 (2012) 166–195. [CrossRef] [Google Scholar]
  9. A.V. Doumas and V.G. Papanicolaou, Asymptotics of the rising moments for the Coupon Collector’s Problem. Electron. J. Probab. 18 (2012) 1–15. [Google Scholar]
  10. R. Durrett, Probability: Theory and Examples, Duxbury Advanced Series. Brooks/Cole – Thomson Learning, 3rd edn. Belmont, CA, USA (2005). [Google Scholar]
  11. P. Erdős and A. Rényi, On a classical problem of probability theory. Magyar. Tud. Akad. Mat. Kutató Int. Közl. 6 (1961) 215–220. [Google Scholar]
  12. R. Fagin, Asymptotic miss ratios over independent references. J. Comput. System Sci. 14 (1977) 222–250. [CrossRef] [MathSciNet] [Google Scholar]
  13. W. Feller, An Introduction to Probability Theory and Its Applications. Vols. I and II. John Wiley & Sons, Inc., New York (1966). [Google Scholar]
  14. L. Flatto, Limit Theorems for Some Random Variables Associated with Urn Models. Ann. Prob. 10 (1982) 927–934. [CrossRef] [Google Scholar]
  15. L. Holst, On Birthday, Collectors’, Occupancy and other classical Urn problems. Int. Statist. Rev. 54 (1986) 15–27. [CrossRef] [Google Scholar]
  16. P.R. Jelenković, Asymptotic approximation of the move-to-front search cost distribution and least-recently-used caching fault probabilities. Ann. Appl. Prob. 9 (1999) 430–464. [CrossRef] [Google Scholar]
  17. N. Kaplan, A generalization of a result of Erdős and Rényi. J. Appl. Prob. 14 (1977) 212–216. [CrossRef] [Google Scholar]
  18. K.L. Locey and J.T. Lennon, Scaling laws predict global microbial diversity. Proc. of Natl. Acad. Sci. USA 113 (2016) 5970–5975. DOI:10.1073/pnas.1521291113 [Google Scholar]
  19. H.M. Mahmoud, Pólya urn models. CRC Press, New York (2008). [Google Scholar]
  20. P. Neal, The Generalised Coupon Collector Problem. J. Appl. Prob. 45 (2008) 621–629. [CrossRef] [Google Scholar]
  21. D.J. Newman and L. Shepp, The double Dixie cup problem. Amer. Math. Monthly 67 (1960) 58–61. MR0120672 [Google Scholar]
  22. S. Ross, A First Course in Probability, 8th edn. Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ (2010). [Google Scholar]
  23. S. Ross, Introduction to Probability Models, 10th edn. Elsevier Inc., Burlington, MA (2010). [Google Scholar]
  24. W. Rudin, Real and Complex Analysis. McGraw-Hill, New York (1987). [Google Scholar]
  25. The Dixie Cup Company History. Available at: (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.