Free Access
Issue
ESAIM: PS
Volume 20, 2016
Page(s) 217 - 237
DOI https://doi.org/10.1051/ps/2016007
Published online 18 July 2016
  1. O. Ajanki, L. Erdös and T. Kruger Quadratic vector equations on complex upper half-plane (2015). [Google Scholar]
  2. G. Anderson, A. Guionnet and O. Zeitouni, An Introduction to Random Matrices. Vol. 118 of Cambridge Studies Advanced Math. (2009). [Google Scholar]
  3. Z.D. Bai and J.W. Silverstein, No eigenvalues outside the support of the limiting spectral distribution of large dimensional sample covariance matrices. Ann. Probab. (1998) 26 316–345. [CrossRef] [Google Scholar]
  4. J. Baik, G. Ben Arous and S. Péché, Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 (2005) 1643–1697. [CrossRef] [Google Scholar]
  5. F. Benaych-Georges and R.N. Rao, The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. (2011) 227 494–521. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Benaych-Georges and R.N. Rao, The singular values and vectors of low rank perturbations of large rectangular random matrices. J. Multivariate Anal. 111 (2012) 120–135. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Capitaine, Additive/multiplicative free subordination property and limiting eigenvectors of spiked additive deformations of Wigner matrices and spiked sample covariance matrices. J. Theor. Probab. 26 (2013) 595–648. [CrossRef] [Google Scholar]
  8. F. Chapon, R. Couillet, W. Hachem and X. Mestre, The outliers among the singular values of large rectangular random matrices with additive fixed rank deformation. Markov Process. Relat. Fields 20 (2014) 183–228. [Google Scholar]
  9. R. Couillet and W. Hachem, Analysis of the limiting spectral measure of large random matrices of the separable covariance type. Random Matrices: Theory Appl. 3 (2014) 1450016. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Couillet and F. Benaych-Georges, Kernel spectral clustering of large dimensional data. Electron. J. Stat. 10 (2016) 1393–1454. [CrossRef] [Google Scholar]
  11. R. Couillet, M. Debbah and J.W. Silverstein, A deterministic equivalent for the analysis of correlated MIMO multiple access channels. IEEE Trans. Inform. Theory 57 (2011) 3493–3514. [CrossRef] [MathSciNet] [Google Scholar]
  12. L. Erdös, B. Schlein and H.-T. Yau, Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Prob. 37 (2009). [Google Scholar]
  13. T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning. Data mining, inference, and prediction. Springer Series in Statistics, 3nd edition. Springer, New York (2009). [Google Scholar]
  14. R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press (2013). [Google Scholar]
  15. R.A. Horn and C.R. Johnson, Topics in Matrix Analysis. Cambridge University Press (1991). [Google Scholar]
  16. G. James, D. Witten, T. Hastie and R. Tibshirani, An introduction to statistical learning. With applications in R. Vol. 103 of Springer Texts in Statistics. Springer, New York (2013). [Google Scholar]
  17. I.M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 (2001) 295327. [CrossRef] [Google Scholar]
  18. A. Kammoun, M. Kharouf, W. Hachem and J. Najim, A central limit theorem for the SINR at the LMMSE estimator output for large-dimensional signals. IEEE Trans. Inform. Theory 55 (2009) 5048–5063. [CrossRef] [MathSciNet] [Google Scholar]
  19. R. Kannan and S. Vempala, Spectral algorithms. Found. Trends Theoret. Comput. Sci. 4 (2009) 157–288. [CrossRef] [Google Scholar]
  20. V. Kargin, A concentration inequality and a local law for the sum of two random matrices. Probab. Theory Related Fields 154 (2012) 677–702. [CrossRef] [MathSciNet] [Google Scholar]
  21. P. Loubaton and P. Vallet, Almost sure localization of the eigenvalues in a Gaussian information plus noise model. Applications to the spiked models. Electron. J. Probab. 16 (2011) 1934–1959. [CrossRef] [MathSciNet] [Google Scholar]
  22. U. von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17 (2007) 395–416. [CrossRef] [Google Scholar]
  23. V.A. Marcenko and L.A. Pastur, Distribution of eigenvalues for some sets of random matrices. Sb. Math. 1 (1967) 457–483. [CrossRef] [Google Scholar]
  24. J.W. Silverstein and S. Choi, Analysis of the limiting spectral distribution of large dimensional random matrices. J. Multivariate Anal. 54 (1995) 295–309. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.