Free Access
Volume 20, 2016
Page(s) 18 - 29
Published online 03 June 2016
  1. D. Bakry, P. Cattiaux and A. Guillin, Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Func. Anal. 254 (2008) 727–759. [Google Scholar]
  2. S.G. Bobkov and M. Ledoux, Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann. Probab. 37 (2009) 403–427. [CrossRef] [Google Scholar]
  3. M. Bonnefont and A. Joulin, Intertwining relations for one-dimensional diffusions and application to functional inequalities. Pot. Anal. 41 (2014) 1005–1031. [Google Scholar]
  4. M. Bonnefont, A. Joulin and Y. Ma, Spectral gap for spherically symmetric log-concave probability measures, and beyond. Preprint arXiv:1406.4621 (2014). [Google Scholar]
  5. H.J. Brascamp and E.H. Lieb, On extensions of the Brunn–Minkovski and Prékopa–Leindler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 (1976) 366–389. [CrossRef] [Google Scholar]
  6. P. Cattiaux, N. Gozlan, A. Guillin and C. Roberto, Functional inequalities for heavy tailed distributions and application to isoperimetry. Electronic J. Prob. 15 (2010) 346–385. [CrossRef] [Google Scholar]
  7. M.F. Chen, Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci. China Ser. A 42 (1999) 805–815. [CrossRef] [MathSciNet] [Google Scholar]
  8. M.F. Chen, Eigenvalues, Inequalities, and Ergodic Theory. Probability and its Applications. Springer-Verlag London, Ltd., London (2005). [Google Scholar]
  9. M.F. Chen and F.Y. Wang, Estimation of spectral gap for elliptic operators. Trans. Amer. Math. Soc. 349 (1997) 1239–1267. [CrossRef] [MathSciNet] [Google Scholar]
  10. H. Djellout and L. Wu, Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann. Inst. Henri Poincaré Probab. Statist. 47 (2011) 450–465. [CrossRef] [Google Scholar]
  11. N. Gozlan, Poincaré inequalities and dimension free concentration of measure. Ann. Inst. Henri Poincaré Probab. Statist. 46 (2010) 708–739. [Google Scholar]
  12. D. Kershaw, Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comp. 41 (1983) 607–611. [MathSciNet] [Google Scholar]
  13. M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités, XXXIII, 120-216, Vol. 1709 of Lect. Notes Math. Springer, Berlin (1999). [Google Scholar]
  14. M. Ledoux, Spectral gap, logarithmic Sobolev constant, and geometric bounds. Surv. Differ. Geom., IX, Int. Press, Somerville, MA (2004) 219-240. [Google Scholar]
  15. L. Miclo, Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite? Ann. Fac. Sci. Toulouse Math. 17 (2008) 121–192. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. Muckenhoupt, Hardy’s inequality with weights. Stud. Math. 44 (1972) 31–38. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.