Free Access
Issue
ESAIM: PS
Volume 19, 2015
Page(s) 746 - 765
DOI https://doi.org/10.1051/ps/2015014
Published online 11 December 2015
  1. D. Berg, Copula goodness-of-fit testing: an overview and power comparison. Eur. J. Finance 15 (2009) 675–701. [CrossRef] [Google Scholar]
  2. A. Bücher, H. Dette, and S. Volgushev, New estimators of the Pickands dependence function and a test for extreme-value dependence. Ann. Statist. 39 (2011) 1963–2006. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Bücher, J. Segers and S. Volgushev, When uniform weak convergence fails: Empirical processes for dependence functions and residuals via epi- and hypographs. Ann. Stat. 42 (2014) 1598–1634. [CrossRef] [Google Scholar]
  4. P. Capéraà, A.L. Fougères and C. Genest, A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84 (1997) 567–577. [CrossRef] [Google Scholar]
  5. S. Coles, An Introduction to Statistical Modeling of Extreme Values. Springer (2001). [Google Scholar]
  6. C.M. Cuadras and J. Augé, A continuous general multivariate distribution and its properties. Commun. Stat. – Theory Methods 10 (1981) 339–353. [CrossRef] [Google Scholar]
  7. P. Deheuvels, On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Stat. Probab. Lett. 12 (1991) 429–439. [CrossRef] [Google Scholar]
  8. F. Durante and G. Salvadori, On the construction of multivariate extreme value models via copulas. Environmetrics 21 (2010) 143–161. [Google Scholar]
  9. F. Durante and C. Sempi, Copula Theory: An Introduction. In Copula Theory and Its Applications. Springer (2010) 3–31. [Google Scholar]
  10. J. Einmahl, A. Krajina and J. Segers, An M-estimator for tail dependence in arbitrary dimensions. Ann. Stat. 40 (2012) 1764–1793. [CrossRef] [Google Scholar]
  11. M. Ferreira, Nonparametric estimation of the tail-dependence coefficient. REVSTAT–Stat. J. 11 (2013) 1–16. [Google Scholar]
  12. M. Fréchet, Remarques au sujet de la note précédente. C. R. Acad. Sci. Paris Sér. I Math. 246 (1958) 2719–2720. [Google Scholar]
  13. C. Genest and L.P. Rivest, Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 88 (1993) 1034–1043. [CrossRef] [Google Scholar]
  14. C. Genest and B. Rémillard, Test of independence and randomness based on the empirical copula process. Test 13 (2004) 335–369. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Genest and A.C. Favre, Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng. 12 (2007) 347–368. [CrossRef] [Google Scholar]
  16. C. Genest and J. Segers, Rank-based inference for bivariate extreme-value copulas. Ann. Stat. 37 (2009) 2990–3022. [CrossRef] [Google Scholar]
  17. C. Genest, K. Ghoudi and L.P. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995) 543–552. [CrossRef] [Google Scholar]
  18. C. Genest, B. Rémillard and D. Beaudoin, Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics 44 (2009) 199–213. [CrossRef] [MathSciNet] [Google Scholar]
  19. C. Genest, J. Nešlehová and N. Ben Ghorbal, Estimators based on Kendall’s tau in multivariate copula models. Australian & New Zealand J. Stat. 53 (2011) 157–177. [CrossRef] [Google Scholar]
  20. G. Gudendorf and J. Segers, Extreme-value Copulas. In Copula Theory and Its Applications Springer (2010) 127–145. [Google Scholar]
  21. P. Hall and N. Tajvidi, Distribution and dependence-function estimation for bivariate extreme-value distributions. Bernoulli 6 (2000) 835–844. [CrossRef] [MathSciNet] [Google Scholar]
  22. L.P. Hansen, Large sample properties of generalized method of moments estimators. Econometrica 50 (1982) 1029–1054. [CrossRef] [Google Scholar]
  23. W. Hoeffding, A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19 (1948) 293–325. [CrossRef] [Google Scholar]
  24. H. Joe, Multivariate Models and Dependence Concepts. Chapman & Hall/CRC, Boca Raton, FL (2001). [Google Scholar]
  25. C. Klüppelberg and G. Kuhn, Copula structure analysis. J. R. Statist. Soc. B 71 (2009) 737–753. [CrossRef] [Google Scholar]
  26. I. Kojadinovic and J. Yan, A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Stat. Comput. 21 (2011) 17–30. [CrossRef] [Google Scholar]
  27. P. Krupskii and H. Joe, Factor copula models for multivariate data. J. Multivariate Anal. 120 (2013) 85–101. [CrossRef] [MathSciNet] [Google Scholar]
  28. G. Mazo, S. Girard and F. Forbes, A flexible and tractable class of one-factor copulas. To appear in Stat. Comput. (2015) Doi:10.1007/s11222-015-9580-7. [Google Scholar]
  29. R.B. Nelsen, An Introduction to Copulas. Springer (2006). [Google Scholar]
  30. R.B. Nelsen, J.J. Quesada-Molina, J.A. Rodríguez-Lallena and M. Úbeda-Flores, Kendall distribution functions. Stat. Probab. Lett. 65 (2003) 263–268. [CrossRef] [Google Scholar]
  31. D.H. Oh and A.J. Patton, Simulated method of moments estimation for copula-based multivariate models. J. Am. Stat. Assoc. 108 (2013) 689–700. [CrossRef] [Google Scholar]
  32. J. Pickands, Multivariate Extreme Value Distributions. Proc. of the 43rd Session of the International Statistical Institute 2 (1981) 859–878. [Google Scholar]
  33. J.R. Schott, Matrix analysis for statistics. Wiley (2005). [Google Scholar]
  34. J. Segers, Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18 (2012) 764–782. [CrossRef] [MathSciNet] [Google Scholar]
  35. H. Tsukahara, Semiparametric estimation in copula models. The Canadian Journal of Statistics / La Revue Canadienne de Statistique 33 (2005) 357–375. [CrossRef] [MathSciNet] [Google Scholar]
  36. A.W. Van der Vaart, Asymptotic Statistics. Cambridge University Press 3 (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.