Free Access
Volume 19, 2015
Page(s) 578 - 589
Published online 01 December 2015
  1. P. Biane, J.-F. Le Gall and M. Yor, Un processus qui ressemble au pont brownien, Séminaire de Probabilités XXI (1987) 270–275. [Google Scholar]
  2. P. Biane and M. Yor, Quelques précisions sur le méandre brownien. Bull. Sci. Math. 112 (1988) 101–109. [MathSciNet] [Google Scholar]
  3. R. Elie, M. Rosenbaum and M. Yor, On the expectation of normalized Brownian functionals up to first hitting times. Electron. J. Probab. 37 (2014) 1–23. [Google Scholar]
  4. J.P. Imhof, Density factorizations for Brownian motion, meander and the three-dimensional bessel process, and applications. J. Appl. Probab. (1984) 500–510. [Google Scholar]
  5. T. Jeulin, Semimartingales et grossissement d’une filtration. In vol. 833 of Lect. Notes Math. Springer (1980). [Google Scholar]
  6. J.W. Pitman, Brownian motion, bridge, excursion, and meander characterized by sampling at independent uniform times. Electron. J. Probab. 4 (1999) 1–33. [CrossRef] [MathSciNet] [Google Scholar]
  7. D. Revuz and M. Yor, Continuous martingales and Brownian motion. In vol. 293. Springer (1999). [Google Scholar]
  8. M. Rosenbaum and M. Yor, On the law of a triplet associated with the pseudo-brownian bridge. Séminaire de Probabilités XLVI (2014) 359–375. [Google Scholar]
  9. G.R. Shorack and J. A. Wellner, Empirical Processes with Applications to Statistics. In vol. 59. SIAM (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.