Free Access
Issue
ESAIM: PS
Volume 19, 2015
Page(s) 544 - 559
DOI https://doi.org/10.1051/ps/2015004
Published online 01 December 2015
  1. S.G. Bobkov and M. Ledoux, From Brunn-Minkowski to Brascamp−Lieb and to logarithmic Sobolev inequalities. Geom. Func. Anal. 10 (2000) 1028–1052. [Google Scholar]
  2. S.G. Bobkov and B. Zegarlinski, Entropy Bounds and Isoperimetry. Memoirs of the AMS (2005). [Google Scholar]
  3. S.G. Bobkov, I. Gentil and L. Ledoux, Hypercontractivity of Hamilton−Jacobi equations. J. Math. Pures Appl. 80 (2001) 669–696. [CrossRef] [Google Scholar]
  4. M. Fathi, A two-scale approach to the hydrodynamic limit, part II: local Gibbs behavior. ALEA 80 (2013) 625–651. [Google Scholar]
  5. N. Gozlan, A characterization of dimension-free concentration in terms of transportation inequalities. Ann. Probab. 37 (2009) 2480–2498. [CrossRef] [Google Scholar]
  6. N. Gozlan, C. Roberto and P. Samson, Characterization of Talagrand’s transport-entropy inequality in metric spaces. Ann. Probab. 41 (2013) 3112–3139. [CrossRef] [Google Scholar]
  7. L. Gross, Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975) 1061–1083. [Google Scholar]
  8. N. Grunewald, F. Otto, C. Villani and M.G. Westdickenberg, A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit. Ann. Inst. Henri Poincaré Probab. Statist. 45 (2009) 302–351. [CrossRef] [Google Scholar]
  9. M. Ledoux, Logarithmic Sobolev inequalities for spin systems revisited (1999). Available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.4917 [Google Scholar]
  10. M. Ledoux, The Concentration of Measure Phenomenon. Vol. 89 of Math. Surv. Monogr. AMS. Providence, Rhode Island (2001). [Google Scholar]
  11. K. Marton, A measure concentration inequality for contracting Markov chains. Geom. Funct. Anal. 6 (1996) 556–571 [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Menz and F. Otto, Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential. Ann. Probab. 41 (2013) 2182–2224. [CrossRef] [Google Scholar]
  13. F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 243 (2007) 121–157. [CrossRef] [MathSciNet] [Google Scholar]
  14. C. Villani, Optimal Transport, Old and New. Vol. 338 of Grund. Math. Wissenschaften. Springer-Verlag (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.