Free Access
Volume 19, 2015
Page(s) 502 - 514
Published online 11 November 2015
  1. V. Alaña and J.L. Flores, The causal boundary of product spacetimes. Gen. Relativ. Gravitation 39 (2007) 1697–1718. [CrossRef] [Google Scholar]
  2. L.J. Alías and A. Gervasio Colares, Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker space-times. Math. Proc. Cambridge Philos. Soc. 143 (2007) 703–729. [MathSciNet] [Google Scholar]
  3. J. Angst, Asymptotic behavior of a relativistic diffusion in Robertson-Walker space-times. To appear in Ann. Inst. Henri Poincaré. Preprint arXiv:1405.0142 (2014). [Google Scholar]
  4. J. Angst and C. Tardif, Dévissage of a Poisson boundary under equivariance and regularity conditions. Séminaire de probabilités de Strasbourg. Preprint arXiv:1311.4428 (2015). [Google Scholar]
  5. J. Angst and C. Tardif, Poisson boundary of a relativistic Markov processes. Work in progress (2015). [Google Scholar]
  6. M. Arnaudon, A. Thalmaier and S. Ulsamer, Existence of non-trivial harmonic functions on Cartan-Hadamard manifolds of unbounded curvature. Mathematische Zeitschrifft 263 (2009) 369–409. [CrossRef] [Google Scholar]
  7. I. Bailleul, Poisson boundary of a relativistic diffusion. Probab. Theory Related Fields 141 (2008) 283–329. [CrossRef] [MathSciNet] [Google Scholar]
  8. R.M. Dudley, Lorentz-invariant Markov processes in relativistic phase space. Ark. Mat. 6 (1966) 241–268. [CrossRef] [MathSciNet] [Google Scholar]
  9. R.M. Dudley, Asymptotics of some relativistic Markov processes. Proc. Natl. Acad. Sci. USA 70 (1973) 3551–3555. [CrossRef] [Google Scholar]
  10. J. Franchi and Y. Le Jan, Relativistic diffusions and Schwarzschild geometry. Comm. Pure Appl. Math. 60 (2007) 187–251. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Geroch, E.H. Kronheimer and R. Penrose, Ideal points in space-time. Roy. Soc. London Proc. Ser. A 327 (1972) 545–567. [CrossRef] [Google Scholar]
  12. S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time. Vol. I of Camb. Monogr. Math. Phys. Cambridge University Press, London (1973). [Google Scholar]
  13. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusions Processes. North Holland, 2nd edition (1989). [Google Scholar]
  14. C. Tardif, Lyapunov spectrum of a relativistic stochastic flow in the Poincaré group. Stoch. Dyn. 14 (2014) 1450013. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Weinberg, Gravitation and Cosmology. John Wiley and Sons (1972). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.