Free Access
Volume 19, 2015
Page(s) 1 - 23
Published online 17 March 2015
  1. D. Anevski and P. Soulier, Monotone spectral density estimation. Ann. Stat. 39 (2011) 418–438. [CrossRef] [Google Scholar]
  2. M. Ayer, H.D. Brunk, G.M. Ewing, W.T. Reid and E. Silverman, An empirical distribution function for sampling with incomplete information. Ann. Math. Stat. (1955) 641–647. [Google Scholar]
  3. R.E. Barlow, D.J. Bartholomew, J.M. Bremner and H.D. Brunk, Statistical inference under order restrictions: Theory and application of isotonic regression. John Wiley & Sons (1972). [Google Scholar]
  4. H.H. Bauschke and J.M. Borwein, On the Convergence of von Neumann’s Alternating Projection Algorithm for Two Sets. Set-Valued Anal. 1 (1993) 185–212. [CrossRef] [MathSciNet] [Google Scholar]
  5. H.H. Bauschke and J.M. Borwein, Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79 (1994) 418–443. [CrossRef] [MathSciNet] [Google Scholar]
  6. M.J. Best and N. Chakravarti, Active set algorithms for isotonic regression; An unifying framework. Math. Program. 47 (1990) 425–439. [Google Scholar]
  7. H.D. Brunk, Estimation of isotonic regression. Cambridge University Press (1970) 177–195. [Google Scholar]
  8. H.D. Brunk, Maximum likelihood estimates of monotone parameters. Ann. Math. Stat. (1955) 607–616. [Google Scholar]
  9. V.V. Buldygin and Y.V. Kozachenko, Metric Characterization of Random Variables and Random Processes. American Mathematical Society (1972). [Google Scholar]
  10. A. Buja, T.J. Hastie and R.J. Tibshirani, Linear smoothers and additive models. Ann. Stat. 17 (1989) 453–510. [CrossRef] [Google Scholar]
  11. F. Deutsch, The method of alternating orthogonal projections. Approximation Theory, Spline Functions and Applications, edited by S.P. Singh (1991) 105–121. [Google Scholar]
  12. C. Durot, On the Lp-error of monotonicity constrained estimators. Ann. Stat. 35 (2007) 1080–1104. [CrossRef] [Google Scholar]
  13. R.L. Dykstra, An isotonic regression algorithm. J. Stat. Plann. Inference 5 (1981) 355–363. [CrossRef] [Google Scholar]
  14. J.H. Friedman and W. Stuetzle, Projection pursuit regression. J. Amer. Stat. Assoc. (1981) 817–823. [Google Scholar]
  15. A. Guyader, N. Jégou, A.B. Németh and S.N. Németh, A Geometrical Approach to Iterative Isotone Regression. Appl. Math. Comput. 227 (2014) 359–369. [CrossRef] [Google Scholar]
  16. L. Györfi, M. Kohler, A. Kryzak and H. Walk, A distribution-free theory of nonparametric regression. Springer-Verlag, New York (1990). [Google Scholar]
  17. D.L. Hanson, G. Pledger and F.T. Wright, On consistency in monotonic regression. Ann. Stat. 1 (1973) 401–421. [CrossRef] [Google Scholar]
  18. T.J. Hastie and R.J. Tibshirani, Generalized additive models. Chapman & Hall/CRC (1990). [Google Scholar]
  19. W. Härdle and P. Hall, On the backfitting algorithm for additive regression models. Statistica Neerlandica 47 (1993) 43–57. [CrossRef] [Google Scholar]
  20. N.W. Hengartner and S. Sperlich, Rate optimal estimation with the integration method in the presence of many covariates. J. Multivar. Anal. 95 (1999) 246–272. [CrossRef] [Google Scholar]
  21. J. Horowitz, J. Klemelä and E. Mammen, Optimal estimation in additive regression models. Bernoulli 12 (2006) 271–298. [CrossRef] [MathSciNet] [Google Scholar]
  22. W. Kim, O.B. Linton and N.W. Hengartner, A computationally efficient oracle estimator for additive nonparametric regression with bootstrap confidence intervals. J. Comput. Graph. Stat. 8 (1999) 278–297. [Google Scholar]
  23. C.I.C. Lee, The min-max algorithm and isotonic regression. Ann. Stat. 11 (1983) 467–477. [CrossRef] [Google Scholar]
  24. E. Mammen and K. Yu, Additive isotone regression. In: Asymptotics: Particles, Processes and Inverse Problems, Lect. Notes Monogr. Series 55 (2007) 179–195. [CrossRef] [Google Scholar]
  25. E. Mammen, O. Linton and J. Nielsen, The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Ann. Stat. 27 (1999) 1443–1490. [Google Scholar]
  26. M. Meyer and M. Woodroofe, On the Degrees of Freedom in Shape-Restricted Regression. Ann. Stat. 28 (2000) 1083–1104. [CrossRef] [Google Scholar]
  27. J.D. Opsomer, Asymptotic properties of backfitting estimators. J. Multivar. Anal. 73 (2000) 166–179. [CrossRef] [Google Scholar]
  28. J.D. Opsomer and D. Ruppert, Fitting a bivariate additive model by local polynomial regression. Ann. Stat. 25 (1997) 186–211. [CrossRef] [Google Scholar]
  29. T. Robertson, F.T. Wright and R.L. Dykstra, Order Restricted Statistical Inference. Wiley, New York (1988). [Google Scholar]
  30. S. van de Geer, and M. Wegkamp, Consistency for the least squares estimator in nonparametric regression. Ann. Stat. 24 (1996) 2513–2523. [CrossRef] [Google Scholar]
  31. S. van de Geer, Empirical Process in M-Estimation. Cambridge University Press (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.