Free Access
Volume 18, 2014
Page(s) 799 - 828
Published online 22 October 2014
  1. R.J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. Inst. Math. Stat., Lect. Notes Monogr. Vol. 38, Ser. 12 (1990). [Google Scholar]
  2. L. Coutin, Rough Paths via Sewing Lemma. ESAIM: PS 16 (2012) 479–526. [CrossRef] [EDP Sciences] [Google Scholar]
  3. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Stoch. Model. Appl. Probab. Springer-Verlag, New-York (1998). [Google Scholar]
  4. M. Delattre and M. Lavielle, Pharmacokinetics and Stochastic Differential Equations: Model and Methodology. Annual Meeting of the Population Approach Group in Europe (2011). [Google Scholar]
  5. H. Doss, Liens entre équations différentielles stochastiques et ordinaires. C.R. Acad. Sci. Paris Ser. A-B 283 (1976) A939–A942. [Google Scholar]
  6. J. Feng, J.-P. Fouque and R. Kumar, Small-Time Asymptotics for Fast Mean-Reverting Stochastic Volatility Models (2010). Preprint arXiv:1009.2782. [Google Scholar]
  7. E. Fournié, J.-M. Lasry, J. Lebuchoux, P.-L. Lions and N. Touzi, Applications of Malliavin Calculus to Monte-Carlo Methods in Finance. Finance Stoch. 3 (1999) 391–412. [Google Scholar]
  8. P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Vols 120 of Camb. Stud. Appl. Math. Cambridge University Press, Cambridge (2010). [Google Scholar]
  9. Y. Jacomet, Pharmacocinétique. Cours et Exercices. Université de Nice, U.E.R. de Médecine, Service de pharmacologie expérimentale et clinique, Ellipses (1989). [Google Scholar]
  10. S. Karlin and H.M. Taylor, A Second Course in Stochastic Processes. Academic Press Inc., Harcourt Brace Jovanovich Publishers (1981). [Google Scholar]
  11. K. Kalogeropoulos, N. Demiris and O. Papaspiliopoulos, Diffusion-driven Models for Physiological Processes. Int. Workshop on Appl. Probab. IWAP (2008). [Google Scholar]
  12. M. Ledoux, Isoperimetry and Gaussian Analysis. Ecole d’été de probabilité de Stain-Flour (1994). [Google Scholar]
  13. A. Lejay, Controlled Differential Equations as Young Integrals: A Simple Approach. J. Differ. Eqs. 248 (2010) 1777–1798. [Google Scholar]
  14. T. Lyons and Z. Qian, System Control and Rough Paths. Oxford University Press (2002). [Google Scholar]
  15. F. Malrieu, Convergence to Equilibrium for Granular Media Equations and their Euler Schemes. Ann. Appl. Probab. 13 (2003) 540–560. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Malrieu and D. Talay, Concentration Inequalities for Euler Schemes. Springer-Verlag (2006) 355–371. [Google Scholar]
  17. X. Mao, A. Truman and C. Yuan, Euler-Maruyama Approximations in Mean-Reverting Stochastic Volatility Model under Regime-Switching. J. Appl. Math. Stoch. Anal. (2006). [Google Scholar]
  18. N. Marie, Sensitivities via Rough Paths (2011). Preprint arXiv:1108.0852. [Google Scholar]
  19. J. Neveu, Processus aléatoires gaussiens. Presses de l’Université de Montréal (1968). [Google Scholar]
  20. D. Nualart, The Malliavin Calculus and Related Topics. Second Edition. Probab. Appl. Springer (2006). [Google Scholar]
  21. N. Tien Dung, Fractional Geometric Mean Reversion Processes. J. Math. Anal. Appl. 330 (2011) 396–402. [CrossRef] [Google Scholar]
  22. M. Sanz-Solé and I. Torrecilla-Tarantino, A Large Deviation Principle in Hölder Norm for Multiple Fractional Integrals. (2007). Preprint arXiv:0702049. [Google Scholar]
  23. N. Simon, Pharmacocinétique de population. Collection Pharmacologie médicale, Solal (2006). [Google Scholar]
  24. H.J. Sussman, On the Gap between Deterministic and Stochastic Ordinary Differential Equations. Ann. Probab. 6 (1978) 19–41. [CrossRef] [MathSciNet] [Google Scholar]
  25. F. Wu, X. Mao and K. Chen, A Highly Sensitive Mean-Reverting Process in Finance and the Euler-Maruyama Approximations. J. Math. Anal. Appl. 348 (2008) 540–554. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.