Free Access
Issue
ESAIM: PS
Volume 18, 2014
Page(s) 686 - 702
DOI https://doi.org/10.1051/ps/2013053
Published online 22 October 2014
  1. V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function. Probab. Theory Related Fields 104 (1996) 43–60. [CrossRef] [MathSciNet] [Google Scholar]
  2. V.E. Beneš, L.A. Shepp and H.S. Witsenhausen, Some solvable stochastic control problems. In Analysis and optimisation of stochastic systems (Proc. Internat. Conf., Univ. Oxford, Oxford, 1978), Academic Press, London (1980) 3–10. [Google Scholar]
  3. A. Beskos, O. Papaspiliopoulos and G.O. Roberts, Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12 (2006) 1077–1098. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Beskos, O. Papaspiliopoulos and G.O. Roberts, A factorisation of diffusion measure and finite sample path constructions. Methodol. Comput. Appl. Probab. 10 (2008) 85–104. [CrossRef] [Google Scholar]
  5. A. Beskos, G. Roberts, A. Stuart and J. Voss, MCMC methods for diffusion bridges. Stoch. Dyn. 8 (2008) 319–350. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Beskos and G.O. Roberts, Exact simulation of diffusions. Ann. Appl. Probab. 15 (2005) 2422–2444. [CrossRef] [Google Scholar]
  7. P. Étoré and M. Martinez, Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process. Monte Carlo Methods Appl. 19 (2013) 41–71. [MathSciNet] [Google Scholar]
  8. S.E. Graversen and A.N. Shiryaev, An extension of P. Lévy’s distributional properties to the case of a Brownian motion with drift. Bernoulli 6 (2000) 615–620. [CrossRef] [MathSciNet] [Google Scholar]
  9. I. Karatzas and S.E. Shreve, Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control. Ann. Probab. 12 (1984) 819–828. [CrossRef] [Google Scholar]
  10. I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, 2nd edn. vol. 113. In Grad. Texts Math. Springer-Verlag, New York (1991) 440–441. [Google Scholar]
  11. J.-F. Le Gall, One-dimensional stochastic differential equations involving the local times of the unknown process. In Stochastic analysis and applications (Swansea, 1983), Lecture Notes in Math., vol. 1095. Springer, Berlin (1984) 51–82. [Google Scholar]
  12. V. Reutenauer and E. Tanré, Exact simulation of prices and greeks: application to cir. Preprint (2008). [Google Scholar]
  13. D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd edn. Springer-Verlag (1999). [Google Scholar]
  14. M. Sbai, Modélisation de la dépendance et simulation de processus en finance. Ph.D. thesis, CERMICS – Centre d’Enseignement et de Recherche en Mathématiques et Calcul Scientifique (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.