Free Access
Volume 18, 2014
Page(s) 642 - 666
Published online 15 October 2014
  1. M. Abramovitz and I. Stegun, Handbook of Mathematical Functions. Dover (1965). [Google Scholar]
  2. Y. Aragon, A. Daouia and C. Thomas-Agnan, Nonparametric frontier estimation: a conditional quantile-based approach. Econom. Theory 21 (2005) 358–389. [CrossRef] [Google Scholar]
  3. N.H. Bingham, C.M. Goldie and J.L. Teugels. Regular Variation. Cambridge, Cambridge University Press (1987). [Google Scholar]
  4. C. Cazals, J.-P. Florens and L. Simar, Nonparametric frontier estimation: a robust approach. J. Econom. 106 (2002) 1–25. [CrossRef] [Google Scholar]
  5. A. Daouia and L. Simar, Robust nonparametric estimators of monotone boundaries. J. Multivariate Anal. 96 (2005) 311–331. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Deprins, L. Simar and H. Tulkens, Measuring labor efficiency in post offices, in The Performance of Public Enterprises: Concepts and Measurements. Edited by P. Pestieau, M. Marchand and H. Tulkens. Amsterdam: North Holland (1984) 243–267. [Google Scholar]
  7. U. Einmahl and D.M. Mason, An empirical process approach to the uniform consistency of kernel-type function estimators. J. Theoret. Probab. 13 (2000) 1–37. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling extremal events. Springer (1997). [Google Scholar]
  9. L. Gardes and G. Stupfler, Estimation of the conditional tail-index using a smoothed local Hill estimator. Extremes 17 (2014) 45–75. [CrossRef] [Google Scholar]
  10. J. Geffroy, Sur un problème d’estimation géométrique. Publ. Inst. Statist. Univ. Paris XIII (1964) 191–210. [Google Scholar]
  11. J. Geffroy, S. Girard and P. Jacob, Asymptotic normality of the L1 −error of a boundary estimator. Nonparametr. Stat. 18 (2006) 21–31. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Girard, A. Guillou and G. Stupfler, Frontier estimation with kernel regression on high order moments. J. Multivariate Anal. 116 (2013) 172–189. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Girard, A. Iouditski and A. Nazin, L1 −optimal nonparametric frontier estimation via linear programming. Autom. Remote Control 66 (2005) 2000–2018. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Girard and P. Jacob, Frontier estimation via kernel regression on high power-transformed data. J. Multivariate Anal. 99 (2008) 403–420. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Girard and P. Jacob, Frontier estimation with local polynomials and high power-transformed data. J. Multivariate Anal. 100 (2009) 1691–1705. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Hall, On estimating the endpoint of a distribution. Ann. Statist. 10 (1982) 556–568. [CrossRef] [MathSciNet] [Google Scholar]
  17. W. Härdle, P. Janssen and R. Serfling, Strong uniform consistency rates for estimators of conditional functionals. Ann. Statist. 16 (1988) 1428–1449. [CrossRef] [MathSciNet] [Google Scholar]
  18. W. Härdle and J.S. Marron, Optimal bandwidth selection in nonparametric regression function estimation. Ann. Statist. 13 (1985) 1465–1481. [CrossRef] [MathSciNet] [Google Scholar]
  19. W. Härdle, B.U. Park and A. Tsybakov, Estimation of non-sharp support boundaries. J. Multivariate Anal. 55 (1995) 205–218. [CrossRef] [MathSciNet] [Google Scholar]
  20. W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13–30. [Google Scholar]
  21. P. Jacob and C. Suquet, Estimating the edge of a Poisson process by orthogonal series. J. Statist. Plann. Inference 46 (1995) 215–234. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Korostelev, L. Simar and A. Tsybakov, Efficient estimation of monotone boundaries. Ann. Statist. 23 (1995) 476–489. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Lemdani, E. Ould-Saïd and N. Poulin, Asymptotic properties of a conditional quantile estimator with randomly truncated data. J. Multivariate Anal. 100 (2009) 546–559. [CrossRef] [MathSciNet] [Google Scholar]
  24. Y.P. Mack and B.W. Silverman, Weak and strong uniform consistency of kernel regression estimates. Z. Wahrscheinlichkeitstheorie verw. Gebiete 61 (1982) 405–415. [CrossRef] [Google Scholar]
  25. E.A. Nadaraya, On non-parametric estimates of density functions and regression curves. Theory Probab. Appl. 10 (1965) 186–190. [Google Scholar]
  26. E. Parzen, On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962) 1065–1076. [CrossRef] [Google Scholar]
  27. M. Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956) 832–837. [CrossRef] [MathSciNet] [Google Scholar]
  28. B.W. Silverman, Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist. 6 (1978) 177–184. [CrossRef] [MathSciNet] [Google Scholar]
  29. W. Stute, A law of the iterated logarithm for kernel density estimators. Ann. Probab. 10 (1982) 414–422. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.