Free Access
Volume 18, 2014
Page(s) 418 - 440
Published online 08 October 2014
  1. R.J. Adler, Hausdorff Dimension and Gaussian fields. Ann. Probab. 5 (1977) 145–151. [CrossRef] [Google Scholar]
  2. R.J. Adler and J.E. Taylor, Random Fields and Geometry. Springer (2007). [Google Scholar]
  3. A. Ayache and J. Lévy Véhel, Processus à régularité locale prescrite. C.R. Acad. Sci. Paris, Ser. I 333 (2001) 233–238. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Ayache, N.-R. Shieh and Y. Xiao, Multiparameter multifractional brownian motion: local nondeterminism and joint continuity of the local times. Ann. Inst. H. Poincaré Probab. Statist (2011). [Google Scholar]
  5. A. Ayache and Y. Xiao, Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets. J. Fourier Anal. Appl. 11 (2005) 407–439. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Baraka, T. Mountford and Y. Xiao, Hölder properties of local times for fractional Brownian motions. Metrika 69 (2009) 125–152. [CrossRef] [Google Scholar]
  7. A. Benassi, S. Cohen and J. Istas, Local self-similarity and the Hausdorff dimension. C.R. Acad. Sci. Paris, Ser. I 336 (2003) 267–272. [CrossRef] [Google Scholar]
  8. A. Benassi, S. Jaffard and D. Roux, Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 19–90. [Google Scholar]
  9. S.M. Berman, Gaussian sample functions: Uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 63–86. [MathSciNet] [Google Scholar]
  10. B. Boufoussi, M. Dozzi and R. Guerbaz, Sample path properties of the local time of multifractional Brownian motion. Bernoulli 13 (2007) 849–867. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.M. Dudley, Sample Functions of the Gaussian Process. Ann. Probab. 1 (1973) 66–103. [CrossRef] [Google Scholar]
  12. K. Falconer, Fractal Geometry: Mathematical Foundation and Applications, 2nd edn. Wiley (2003). [Google Scholar]
  13. E. Herbin, From N-parameter fractional Brownian motions to N-parameter multifractional Brownian motions. Rocky Mountain J. Math. 36 (2006) 1249–1284. [CrossRef] [MathSciNet] [Google Scholar]
  14. E. Herbin, Locally Asymptotic Self-similarity and Hölder Regularity. In preparation. [Google Scholar]
  15. E. Herbin and E. Merzbach, A set-indexed fractional Brownian motion. J. Theoret. Probab. 19 (2006) 337–364. [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Herbin and E. Merzbach, The Multiparameter fractional Brownian motion, in Math Everywhere. Edited by G. Aletti, M. Burger, A. Micheletti, D. Morale. Springer (2006). [Google Scholar]
  17. E. Herbin and J. Lévy-Véhel, Stochastic 2-microlocal analysis. Stoch. Process. Appl. 119 (2009) 2277–2311. [CrossRef] [Google Scholar]
  18. B. Hunt, The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math. Soc. 126 (1998) 791–800. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.-P. Kahane, Some random series of functions. Cambridge studies in advanced mathematics. Cambridge University Press, 2nd edn. (1985). [Google Scholar]
  20. D. Khoshnevisan, Multiparameter processes: An Introduction to Random Fields. Springer Monographs in Mathematics. Springer-Verlag, New York (2002). [Google Scholar]
  21. D. Khoshnevisan and Y. Xiao, Lévy processes: capacity and Hausdorff dimension. Ann. Probab. 33 (2005) 841–878. [CrossRef] [Google Scholar]
  22. G.F. Lawler and F.J. Viklund, Optimal Hölder exponent for the SLE path. Duke Math. J. 159 (2011) 351–383. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer (1991). [Google Scholar]
  24. J.R. Lind, Hölder regularity of the SLE trace. Trans. Amer. Math. Soc. 360 (2008) 3557–3578. [CrossRef] [MathSciNet] [Google Scholar]
  25. L. Liu, Stable and multistable processes and localisability. Ph.D. thesis of the University of St. Andrews (2010). [Google Scholar]
  26. M.B. Marcus and J. Rosen, Markov Processes, Gaussian Processes and Local Times. Cambridge University Press (2006). [Google Scholar]
  27. M.M. Meerschaert, W. Wang and Y. Xiao, Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields. Trans. Amer. Math. Soc. 365 (2013) 1081–1107. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Meerschaert, D. Wu and Y. Xiao, Local times of multifractional Brownian sheets. Bernoulli, 14 (2008) 865–898. [CrossRef] [MathSciNet] [Google Scholar]
  29. S. Orey and W.E. Pruitt, Sample functions of the N-parameter Wiener process. Ann. Probab. 1 (1973) 138–163. [CrossRef] [Google Scholar]
  30. R.F. Peltier and J. Lévy-Véhel, Multifractional brownian motion: Definition and preliminary results. Rapport de recherche INRIA (RR-2645) (1995) 39. [Google Scholar]
  31. W. Pruitt, The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19 (1969) 371–378. [MathSciNet] [Google Scholar]
  32. S. Stoev and M. Taqqu, How rich is the class of multifractional Brownian motions? Stoch. Proc. Appl. 116 (2006) 200–221. [Google Scholar]
  33. V. Strassen, An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964) 211–226. [CrossRef] [MathSciNet] [Google Scholar]
  34. S.J. Taylor, The α-dimensional measure of the graph and set of zeroes of a Brownian path, Math. Proc. Cambridge Philos. Soc. 51 (1955) 265–274. [CrossRef] [Google Scholar]
  35. C.A. Tudor and Y. Xiao, Sample path properties of bifractional Brownian motion. Bernoulli 13 (2007) 1023–1052. [CrossRef] [MathSciNet] [Google Scholar]
  36. D. Wu and Y. Xiao, Geometric properties of fractional Brownian sheets. J. Fourier Anal. Appl. 13 (2007) 1–37. [CrossRef] [Google Scholar]
  37. Y. Xiao, Dimension results for Gaussian vector fields and index-α stable fields. Ann. Probab. 23 (1995) 273–291. [CrossRef] [Google Scholar]
  38. Y. Xiao, Sample path properties of anisotropic Gaussian random fields, in A Minicourse on Stochastic Partial Differential Equations. Edited by D. Khoshnevisan and F. Rassoul-Agha. Springer, New York. Lect. Notes Math. 1962 (2009) 145–212. [Google Scholar]
  39. Y. Xiao, On uniform modulus of continuity of random fields. Monatsh. Math. 159 (2010) 163–184. [CrossRef] [MathSciNet] [Google Scholar]
  40. M.I. Yadrenko, Local properties of sample functions of random fields. Selected translations in Mathematics, Statistics and probab. 10 (1971) 233–245. [Google Scholar]
  41. L. Yoder, The Hausdorff dimensions of the graph and range of the N-parameter Brownian motion in d-space. Ann. Probab. 3 169–171, 1975. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.