Free Access
Volume 18, 2014
Page(s) 77 - 116
Published online 28 November 2013
  1. H. Akaike, Statistical predictor identification. Ann. Inst. Stat. Math. 22 (1970) 203–217. [CrossRef] [Google Scholar]
  2. S. Arlot, Choosing a penalty for model selection in heteroscedastic regression. Preprint arXiv:0812.3141v2 (2010). [Google Scholar]
  3. S. Arlot and P. Massart, Data-driven calibration of penalties for least-squares regression. J. Machine Learn. Research 10 (2009) 245–279. [Google Scholar]
  4. Y. Baraud, Model selection for regression on a fixed design. Probab. Theory Related Fields 117 (2000) 467–493. [CrossRef] [MathSciNet] [Google Scholar]
  5. Y. Baraud, Model selection for regression on a random design. ESAIM: Probab. Statist. 6 (2002) 127–146. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. Y. Baraud, F. Comte and G. Viennet, Adaptive estimation in autoregression or β-mixing regression via model selection. Ann. Stat. 29 (2001) 839–875. [CrossRef] [Google Scholar]
  7. L. Birgé and P. Massart, From model selection to adaptive estimation. Festschrift for Lucien Lecam: Research Papers in Probab. Stat. (1997) 55–87. [Google Scholar]
  8. L. Birgé and P. Massart, Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4 (1998) 329–375. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Birgé and P. Massart, An adaptive compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1–36. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Birgé and P. Massart. Gaussian model selection. J. Europ. Math. Soc. 3 (2001) 203–268. [Google Scholar]
  11. L. Birgé and P. Massart, Minimal penalties for gaussian model selection. Probab. Theory Related Fields 138 (2007) 33–73. [CrossRef] [MathSciNet] [Google Scholar]
  12. L. Breiman and J.H. Friedman, Estimating optimal transformations for multiple regression and correlations (with discussion). J. Amer. Stat. Assoc. 80 (1985) 580–619. [Google Scholar]
  13. E. Brunel and F. Comte, Adaptive nonparametric regression estimation in presence of right censoring. Math. Methods Stat. 15 (2006) 233–255. [Google Scholar]
  14. E. Brunel and F. Comte, Model selection for additive regression models in the presence of censoring, chapt. 1 in “Mathematical Methods in Survival Analysis, Reliability and Quality of Life”, Wiley (2008) 17–31. [Google Scholar]
  15. A. Buja, T.J. Hastie and R.J. Tibshirani, Linear smoothers and additive models (with discussion). Ann. Stat. 17 (1989) 453–555. [CrossRef] [Google Scholar]
  16. F. Comte and Y. Rozenholc, Adaptive estimation of mean and volatility functions in (auto-)regressive models. Stoch. Process. Appl. 97 (2002) 111–145. [CrossRef] [MathSciNet] [Google Scholar]
  17. X. Gendre, Simultaneous estimation of the mean and the variance in heteroscedastic gaussian regression. Electron. J. Stat. 2 (2008) 1345–1372. [CrossRef] [Google Scholar]
  18. W. Härdle, M. Müller, S. Sperlich and A. Werwatz. Nonparametric and Semiparametric Models. Springer (2004). [Google Scholar]
  19. T.J. Hastie and R.J. Tibshirani, Generalized additive models. Chapman and Hall (1990). [Google Scholar]
  20. R.A. Horn and C.R. Johnson, Matrix analysis. Cambridge University Press (1990). [Google Scholar]
  21. B. Laurent, J.M. Loubes and C. Marteau, Testing inverse problems: a direct or an indirect problem? J. Stat. Plann. Inference 141 (2011) 1849–1861. [Google Scholar]
  22. B. Laurent and P. Massart, Adaptive estimation of a quadratic functional by model selection. Ann. Stat. 28 (2000) 1302–1338. [CrossRef] [MathSciNet] [Google Scholar]
  23. W. Leontief, Introduction to a theory of the internal structure of functional relationships. Econometrica 15 (1947) 361–373. [CrossRef] [Google Scholar]
  24. O. Linton and J.P. Nielsen, A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika 82 (1995) 93–101. [CrossRef] [Google Scholar]
  25. C.L. Mallows, Some comments on cp. Technometrics 15 (1973) 661–675,. [Google Scholar]
  26. E. Mammen, O. Linton and J.P. Nielsen, The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Ann. Stat. 27 (1999) 1443–1490. [Google Scholar]
  27. P. Massart, Concentration inequalities and model selection, in vol. 1896 of Lect. Notes Math. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6-23 (2003). Springer, Berlin (2007). [Google Scholar]
  28. A.D.R. McQuarrie and C.L. Tsai, Regression and times series model selection. River Edge, NJ (1998). [Google Scholar]
  29. L. Meier, S. van de Geer and P. Bühlmann, High-dimensional additive modeling. Ann. Stat. 37 (2009) 3779–3821. [Google Scholar]
  30. J. Opsomer and D. Ruppert, Fitting a bivariate additive model by local polynomial regression. Ann. Stat. 25 (1997) 186–211. [CrossRef] [Google Scholar]
  31. V.V. Petrov, Limit theorems of probability theory: sequences of independent random variables. Oxford Studies Probab. 4 (1995). [Google Scholar]
  32. P.D. Ravikumar, H. Liu, J.D. Lafferty and L.A. Wasserman, Sparse additive models. J. Royal Statist. Soc. 71 (2009) 1009–1030. [Google Scholar]
  33. S. Robin, F. Rodolphe and S. Schbath, DNA, Words and Models. Cambridge University Press (2005). [Google Scholar]
  34. D. Ruppert and M.P. Wand, Multivariate locally weighted least squares regression. Ann. Stat. 22 (1994) 1346–1370. [CrossRef] [Google Scholar]
  35. H. Scheffé, The analysis of variance. Wiley-Interscience (1959). [Google Scholar]
  36. E. Severance-Lossin and S. Sperlich, Estimation of derivatives for additive separable models. Statististics 33 (1999) 241–265. [Google Scholar]
  37. C.J. Stone, Additive regression and other nonparametric models. Ann. Stat. 14 (1985) 590–606. [CrossRef] [Google Scholar]
  38. D. Tjøstheim and B. Auestad, Nonparametric identification of nonlinear time series: Selecting significant lags. J. Amer. Stat. Assoc. 89 (1994) 1410–1430. [Google Scholar]
  39. B. von Bahr and C.G. Esseen, Inequalities for the rth absolute moment of a sum of random variables 1 ≤ r ≤ 2 . Ann. Math. Stat. 36 (1965) 299–303. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.