Free Access
Volume 18, 2014
Page(s) 1 - 41
Published online 06 December 2013
  1. U. Amato, A. Antoniadis and M. Pensky, Wavelet kernel penalized estimation for non-equispaced design regression. Statist. Comput. 16 (2006) 37–55. [CrossRef] [Google Scholar]
  2. A. Antoniadis and D.T. Pham, Wavelet regression for random or irregular design. Comput. Statist. Data Anal. 28 (1998) 353–369. [CrossRef] [MathSciNet] [Google Scholar]
  3. N. Bissantz, L. Dumbgen, H. Holzmann and A. Munk, Nonparametric confidence bands in deconvolution density estimation. J. Royal Statist. Soc. Series B 69 (2007) 483–506. [CrossRef] [Google Scholar]
  4. L.D. Brown, T.T. Cai, M.G. Low and C.H. Zhang, Asymptotic equivalence theory for nonparametric regression with random design. Annal. Statist. 30 (2002) 688–707. [Google Scholar]
  5. T.T. Cai and L.D. Brown, Wavelet shrinkage for nonequispaced samples. Annal. Statist. 26 (1998) 1783–1799. [Google Scholar]
  6. C. Chesneau, Regression in random design: a minimax study. Statist. Probab. Lett. 77 (2007) 40–53. [CrossRef] [MathSciNet] [Google Scholar]
  7. I. Daubechies, Ten Lectures on Wavelets. Philadelphia: SIAM (1992). [Google Scholar]
  8. R.B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation. London: Academic Press (1973). [Google Scholar]
  9. S. Gaïffas,. Convergence rates for pointwise curve estimation with a degenerate design. Math. Meth. Statist. 14 (2005) 1–27. [Google Scholar]
  10. S. Gaïffas, Sharp estimation in sup norm with random design. Statist. Probab. Lett. 77 (2006) 782–794. [CrossRef] [Google Scholar]
  11. S. Gaïffas, On pointwise adaptive curve estimation based on inhomogeneous data. ESAIM: Probab. Statist. 11 (2007) 344–364. [CrossRef] [EDP Sciences] [Google Scholar]
  12. S. Gaïffas, Uniform estimation of a signal based on inhomogeneous data. Statistica Sinica 19 (2009) 427–447. [MathSciNet] [Google Scholar]
  13. E. Giné and R. Nickl, Confidence bands in density estimation. Annal. Statist. 38 (2010) 1122–1170. [Google Scholar]
  14. A. Guillou and N. Klutchnikoff, Minimax pointwise estimation of an anisotropic regression function with unknown density of the design. Math. Methods Statist. 20 (2011) 30–57. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Hall and B.A. Turlach, Interpolation methods for nonlinear wavelet regression with irregularly spaced design. Annal. Statist. 25 (1997) 1912–1925. [Google Scholar]
  16. W. Härdle, G. Kerkyacharian, D. Picard and A. Tsybakov, Wavelets, Approximation, and Statistical Applications, vol. 129 of Lect. Notes Statist. Springer-Verlag, New York (1998). [Google Scholar]
  17. M. Hoffmann and M. Reiss, Nonlinear estimation for linear inverse problems with error in the operator. Annal. Statist. 36 (2008) 310–336. [CrossRef] [MathSciNet] [Google Scholar]
  18. I.M. Johnstone, Minimax Bayes, asymptotic minimax and sparse wavelet priors, in Statistical Decision Theory and Related Topics, edited by S.S. Gupta and J.O. Berger. Springer-Verlag, New York (1994) 303–326, [Google Scholar]
  19. I.M. Johnstone, Function Estimation and Gaussian Sequence Models. Unpublished Monograph (2002). [Google Scholar]
  20. I.M. Johnstone, G. Kerkyacharian, D. Picard and M. Raimondo, Wavelet deconvolution in a periodic setting. J. Royal Statist. Soc. Series B 66 (2004) 547-573 (with discussion, 627--657). [Google Scholar]
  21. G. Kerkyacharian and D. Picard, Regression in random design and warped wavelets. Bernoulli 10 (2004) 1053-1105. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Kohler, Nonlinear orthogonal series estimation for random design regression. J. Statist. Plann. Inference 115 (2003) 491-520. [CrossRef] [MathSciNet] [Google Scholar]
  23. A.P. Korostelev and A.B. Tsybakov, Minimax Theory of Image Reconstruction, vol. 82 of Lect. Notes Statist. Springer-Verlag, New York (1993). [Google Scholar]
  24. A. Kovac and B.W. Silverman, Extending the scope of wavelet regression methods by coefficient-dependent thresholding. J. Amer. Statist. Assoc. 95 (2000) 172-183. [CrossRef] [Google Scholar]
  25. R. Kulik and M. Raimondo, Wavelet regression in random design with heteroscedastic dependent errors. Annal. Statist. 37 (2009) 3396-3430. [Google Scholar]
  26. O.V. Lepski, A problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 (1990) 454-466. [CrossRef] [MathSciNet] [Google Scholar]
  27. O.V. Lepski, Asymptotically minimax adaptive estimation I: Upper bounds. Optimally adaptive estimators. Theory Probab. Appl. 36 (1991) 682-697. [CrossRef] [Google Scholar]
  28. O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors Annal. Statist. 25 (1997) 929-947. [CrossRef] [MathSciNet] [Google Scholar]
  29. O. Lepski and V. Spokoiny, Optimal pointwise adaptive methods in nonparametric estimation. Annal. Statist. 25 (1997) 2512-2546. [CrossRef] [MathSciNet] [Google Scholar]
  30. S. Mallat, A Wavelet Tour of Signal Processing. 2nd Edition, Academic Press, San Diego (1999). [Google Scholar]
  31. Y. Meyer, Wavelets and Operators. Cambridge: Cambridge University Press (1992). [Google Scholar]
  32. M. Pensky and T. Sapatinas, Functional deconvolution in a periodic case: uniform case. Annal. Statist. 37 (2009) 73-104. [CrossRef] [Google Scholar]
  33. M. Pensky and T. Sapatinas, On convergence rates equivalency and sampling strategies in functional deconvolution models. Annal. Statist. 38 (2010) 1793-1844. [CrossRef] [Google Scholar]
  34. M. Pensky and B. Vidakovic, On non-equally spaced wavelet regression. Annal. Instit. Statist. Math. 53 (2001) 681-690. [CrossRef] [Google Scholar]
  35. S. Sardy, D.B. Percival, A.G. Bruce, H.-Y. Gao and W. Stuelzle, Wavelet shrinkage for unequally spaced data. Statist. Comput. 9 (1999) 65-75. [CrossRef] [Google Scholar]
  36. K. Tribouley, Adaptive simultaneous confidence intervals in non-parametric estimation. Statist. Probab. Lett. 69 (2004) 37-51. [CrossRef] [MathSciNet] [Google Scholar]
  37. A.B. Tsybakov, Introduction to Nonparametric Estimation. Springer-Verlag, New York (2009). [Google Scholar]
  38. G. Wahba, Spline Models for Observational Data. SIAM, Philadelphia (1990). [Google Scholar]
  39. S. Zhang, M.-Y. Wong and Z. Zheng, Wavelet threshold estimation of a regression function with random design. J. Multivariate Anal. 80 (2002) 256-284. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.