Free Access
Volume 16, 2012
Page(s) 436 - 452
Published online 04 September 2012
  1. D. Arthur and S. Vassilvitskii, қ-means++ : the advantages of careful seeding, in Proc. of SODA (2007). [Google Scholar]
  2. S. Ben-David and U. von Luxburg, Relating clustering stability to properties of cluster boundaries, in Proc. of COLT (2008). [Google Scholar]
  3. S. Ben-David, U. von Luxburg and D. Pál, A sober look on clustering stability, in Proc. of COLT (2006). [Google Scholar]
  4. S. Ben-David, D. Pál and H.-U. Simon, Stability of қ-means clustering, in Proc. of COLT (2007). [Google Scholar]
  5. L. Bottou and Y. Bengio, Convergence properties of the қ-means algorithm, in Proc. of NIPS (1995). [Google Scholar]
  6. S. Dasgupta and L. Schulman, A probabilistic analysis of EM for mixtures of separated, spherical Gaussians. J. Mach. Learn. Res. 8 (2007) 203–226. [Google Scholar]
  7. S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions. Springer (2000). [Google Scholar]
  8. D. Hochbaum and D. Shmoys, A best possible heuristic for the -center problem. Math. Operat. Res. 10 (1985) 180–184. [CrossRef] [Google Scholar]
  9. T. Lange, V. Roth, M. Braun and J. Buhmann, Stability-based validation of clustering solutions. Neural Comput. 16 (2004) 1299–1323. [CrossRef] [PubMed] [Google Scholar]
  10. R. Ostrovsky, Y. Rabani, L.J. Schulman and C. Swamy, The effectiveness of Lloyd-type methods for the қ-means problem, in Proc. of FOCS (2006). [Google Scholar]
  11. O. Shamir and N. Tishby, Cluster stability for finite samples, in Proc. of NIPS (2008). [Google Scholar]
  12. O. Shamir and N. Tishby, Model selection and stability in қ-means clustering, in Proc. of COLT (2008). [Google Scholar]
  13. O. Shamir and N. Tishby, On the reliability of clustering stability in the large sample regime, in Proc. of NIPS (2008). [Google Scholar]
  14. N. Srebro, G. Shakhnarovich and S. Roweis, An investigation of computational and informational limits in Gaussian mixture clustering, in Proc. of ICML (2006). [Google Scholar]
  15. Z. Zhang, B. Dai and A. Tung, Estimating local optimums in EM algorithm over Gaussian mixture model, in Proc. of ICML (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.