Free Access
Issue
ESAIM: PS
Volume 16, 2012
Page(s) 436 - 452
DOI https://doi.org/10.1051/ps/2012013
Published online 04 September 2012
  1. D. Arthur and S. Vassilvitskii, қ-means++ : the advantages of careful seeding, in Proc. of SODA (2007).
  2. S. Ben-David and U. von Luxburg, Relating clustering stability to properties of cluster boundaries, in Proc. of COLT (2008).
  3. S. Ben-David, U. von Luxburg and D. Pál, A sober look on clustering stability, in Proc. of COLT (2006).
  4. S. Ben-David, D. Pál and H.-U. Simon, Stability of қ-means clustering, in Proc. of COLT (2007).
  5. L. Bottou and Y. Bengio, Convergence properties of the қ-means algorithm, in Proc. of NIPS (1995).
  6. S. Dasgupta and L. Schulman, A probabilistic analysis of EM for mixtures of separated, spherical Gaussians. J. Mach. Learn. Res. 8 (2007) 203–226.
  7. S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions. Springer (2000).
  8. D. Hochbaum and D. Shmoys, A best possible heuristic for the -center problem. Math. Operat. Res. 10 (1985) 180–184. [CrossRef]
  9. T. Lange, V. Roth, M. Braun and J. Buhmann, Stability-based validation of clustering solutions. Neural Comput. 16 (2004) 1299–1323. [CrossRef] [PubMed]
  10. R. Ostrovsky, Y. Rabani, L.J. Schulman and C. Swamy, The effectiveness of Lloyd-type methods for the қ-means problem, in Proc. of FOCS (2006).
  11. O. Shamir and N. Tishby, Cluster stability for finite samples, in Proc. of NIPS (2008).
  12. O. Shamir and N. Tishby, Model selection and stability in қ-means clustering, in Proc. of COLT (2008).
  13. O. Shamir and N. Tishby, On the reliability of clustering stability in the large sample regime, in Proc. of NIPS (2008).
  14. N. Srebro, G. Shakhnarovich and S. Roweis, An investigation of computational and informational limits in Gaussian mixture clustering, in Proc. of ICML (2006).
  15. Z. Zhang, B. Dai and A. Tung, Estimating local optimums in EM algorithm over Gaussian mixture model, in Proc. of ICML (2008).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.