Free Access
Volume 16, 2012
Page(s) 25 - 47
Published online 22 March 2012
  1. R.C. Bradley, Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surveys 2 (2005) 107–144. [CrossRef] [MathSciNet]
  2. D. Dacunha-Castelle and E. Gassiat, The estimation of the order of a mixture model. Bernoulli 3 (1997) 279–299. [CrossRef] [MathSciNet]
  3. D. Dacunha-Castelle and E. Gassiat, Testing in locally conic models and application to mixture models. ESAIM : PS 1 (1997) 285–317. [CrossRef] [EDP Sciences]
  4. D. Dacunha-Castelle and E. Gassiat, Testing the order of a model using locally conic parametrization : population mixtures and stationary ARMA processes. Ann. Stat. 27 (1999) 1178–1209. [CrossRef] [MathSciNet]
  5. R. Douc, E. Moulines and T. Rydén, Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. Ann. Stat. 32 (2004) 2254–2304. [CrossRef] [MathSciNet]
  6. P. Doukhan, Mixing : properties and examples. Springer-Verlag, New York. Lect. Notes in Stat. 85 (1994).
  7. P. Doukhan, P. Massart and E. Rio, Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincaré 31 (1995) 393–427.
  8. Ch. Engel and J.D. Hamilton, Long swings in the dollar : are they in the data and do markets know it? Am. Econ. Rev. 80 (1990) 689–713.
  9. C. Francq and M. Roussignol, Ergodicity of autoregressive processes with Markov-switching and consistency of the maximum likelihood estimator. Statistics 32 (1998) 151–173. [CrossRef] [MathSciNet]
  10. K. Fukumizu, Likelihood ratio of unidentifiable models and multilayer neural networks. Ann. Stat. 31 (2003) 833–851. [CrossRef]
  11. R. Garcia, Asymptotic null distribution of the likelihood ratio test in Markov switching models. Internat. Econ. Rev. 39 (1998) 763–788. [CrossRef]
  12. E. Gassiat, Likelihood ratio inequalities with applications to various mixtures. Ann. Inst. Henri Poincaré 38 (2002) 897–906. [CrossRef]
  13. E. Gassiat and C. Keribin, The likelihood ratio test for the number of components in a mixture with Markov regime. ESAIM : PS 4 (2000) 25–52. [CrossRef] [EDP Sciences]
  14. J.D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57 (1989) 357–384. [CrossRef] [MathSciNet]
  15. J.D. Hamilton, Analysis of time series subject to changes in regime. J. Econom. 64 (1990) 307–333. [CrossRef]
  16. B.E. Hansen, The likelihood ratio test under nonstandard conditions : testing the Markov switching model of GNP. J. Appl. Econom. 7 (1992) 61–82. [CrossRef]
  17. B.E. Hansen, Erratum : The likelihood ratio test under nonstandard conditions : testing the Markov switching model of GNP. J. Appl. Econom. 11 (1996) 195–198. [CrossRef]
  18. B.E. Hansen, Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica 64 (1996) 413–430. [CrossRef] [MathSciNet]
  19. J. Henna, On estimating the number of constituents of a finite mixture of continuous distributions. Ann. Inst. Statist. Math. 37 (1985) 235–240. [CrossRef] [MathSciNet]
  20. A.J. Izenman and C. Sommer, Philatelic mixtures and multivariate densities. J. Am. Stat. Assoc. 83 (1988) 941–953. [CrossRef]
  21. C. Keribin, Consistent estimation of the order of mixture models. Sankhya : The Indian Journal of Statistics 62 (2000) 49–66.
  22. V. Krishnamurthy and T. Rydén, Consistent estimation of linear and non-linear autoregressive models with Markov regime. J. Time Ser. Anal. 19 (1998) 291–307. [CrossRef] [MathSciNet]
  23. P.-S. Lam, The Hamilton model with a general autoregressive component : estimation and comparison with other models of economic time series. J. Monet. Econ. 26 (1990) 409–432. [CrossRef]
  24. B.G. Leroux, Maximum penalized likelihood estimation for independent and Markov-dependent mixture models. Biometrics 48 (1992) 545–558. [CrossRef] [PubMed]
  25. B.G. Leroux, Consistent estimation of a mixing distribution. Ann. Stat. 20 (1992) 1350–1360. [CrossRef]
  26. B.G. Lindsay, Moment matrices : application in mixtures. Ann. Stat. 17 (1983) 722–740. [CrossRef]
  27. X. Liu and Y. Shao, Asymptotics for likelihood ratio tests under loss of identifiability. Ann. Stat. 31 (2003) 807–832. [CrossRef]
  28. R. Rios and L.A. Rodriguez, Penalized estimate of the number of states in Gaussian linear AR with Markov regime. Electron. J. Stat. 2 (2008) 1111–1128. [CrossRef] [MathSciNet]
  29. K. Roeder, A graphical technique for determining the number of components in a mixture of normals. J. Am. Stat. Assoc. 89 (1994) 487–495. [CrossRef]
  30. T. Ryden, Estimating the order of hidden Markov models. Statistics 26 (1995) 345–354. [CrossRef] [MathSciNet]
  31. G.W. Schwert, Business cycles, financial crises and stock volatility. Carnegie-Rochester Conf. Ser. Public Policy 31 (1989) 83–125. [CrossRef]
  32. A.W. Van der Vaart, Asymptotic Statistics. Cambridge University Press (2000).
  33. C.S. Wong and W.K. Li, On a mixture autoregressive model. J. R Stat. Soc. Ser. B 62 (2000) 95–115.
  34. J.F. Yao and J.G. Attali, On stability of nonlinear AR processes with Markov switching. Adv. Appl. Probab. 32 (2000) 394–407. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.