Free Access
Volume 16, 2012
Page(s) 375 - 398
Published online 03 September 2012
  1. N. Balakrishnan, N.L. Johnson and S. Kotz, Continuous Univariate Distributions, 2nd edition. John Wiley, New York 1 (1995).
  2. M.J. Bayarri and J. Berger, The interplay of Bayesian and frequentist analysis. Stat. Sci. 19 (2004) 58–80. [CrossRef]
  3. J.O. Berger and J.M. Bernardo, Ordered Group Reference Priors With Applications to Multinomial and Variance Component Problems. Technical Report Dept. of Statistics, Purdue University (1989).
  4. J.O. Berger and J.M. Bernardo, Estimating a product of means : Bayesian analysis with reference priors. J. Amer. Statist. Assoc. 84 (1989) 200–207. [CrossRef] [MathSciNet]
  5. J.O. Berger and J.M. Bernardo, Ordered group reference priors, with applications to multinomial problems. Biometrika 79 (1992) 25–37. [CrossRef]
  6. J.O. Berger and J.M. Bernardo, On the development of reference priors, edited by J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith, Bayesian Statistics. University Press, Oxford (with discussion) 4 (1992) 35–60.
  7. J.O. Berger and D. Sun, Reference priors with partial information. Biometrika 85 (1998) 55–71. [CrossRef]
  8. J.O. Berger and R. Yang, A catalog of noninformative priors. ISDS Discussion Paper, Duke Univ. (1997) 97–42.
  9. J.O. Berger, J.M. Bernardo and D. Sun, The formal definition of reference priors. Ann. Stat. 37 (2009). [CrossRef]
  10. J.M. Bernardo, Reference posterior distributions for Bayesian inference (with discussion). J. R. Stat. Soc. B 41 (1979) 113–148.
  11. J.M. Bernardo, Noninformative priors do not exist : a discussion. (with discussion) J. Stat. Plann. Inference 65 (1997) 159–189. [CrossRef]
  12. J.M. Bernardo, Reference Analysis, edited by D.K. Dey and C.R. Rao. Handbook of Stat. 25 (2005) 17–90.
  13. J.M. Bernardo, Intrinsic credible regions : an objective Bayesian approach to interval estimation (with discussion). Test 14 (2005) 317–384. [CrossRef] [MathSciNet]
  14. J.M. Bernardo and J.M. Ramon, An introduction to Bayesian reference analysis : inference on the ratio of multinomial parameters. J. R. Stat. Soc. D 47 (1998) 101–135. [CrossRef]
  15. J.M. Bernardo and A.F.M. Smith, Bayesian Theory. Wiley, Chichester (1994).
  16. D.A. Berry, M.C. Wolff and D. Sack, Decision making during a phase III randomized controlled trial. Control. Clin. Trials 15 (1994) 360–378. [CrossRef] [PubMed]
  17. L.D. Brown, T.T. Cai and A. DasGupta, Interval estimation for a binomial proportion (with discussion). Stat. Sci. 16 (2001) 101–133.
  18. L.D. Brown, T.T. Cai and A. DasGupta, Confidence intervals for a binomial proportion and edgeworth expansions. Ann. Stat. 30 (2002) 160–201. [CrossRef]
  19. H. Chu and M.E. Halloran, Bayesian estimation of vaccine efficacy. Clin. Trials 1 (2004) 306–314. [CrossRef] [PubMed]
  20. R.D. Cousins, Improved central confidence intervals for the ratio of Poisson means. Nucl. Instrum. Methods Phys. Res. A 417 (1998) 391–399. [CrossRef]
  21. G.S. Datta and R. Mukerjee, Probability Matching Priors : Higher Order Asymptotics. Springer, New-York (2004).
  22. M. Ewell, Comparing methods for calculating confidence intervals for vaccine efficacy. Stat. Med. 15 (1996) 2379–2392. [CrossRef] [PubMed]
  23. M.E. Halloran, I.M.Jr. Longini and C.J. Struchiner, Design and interpretation of vaccine field studies. Epidemiol. Rev. 21 (1999) 73–88. [CrossRef] [PubMed]
  24. N.L. Johnson, A.W. Kemp and S. Kotz, Univariate Discrete Distributions, 3rd edition. John Wiley, New York (2005).
  25. R.E. Kass and L. Wasserman, The selection of prior distributions by formal rules. J. Am. Statist. Assoc. 91 (1996) 1343–1370. [NASA ADS] [CrossRef]
  26. C. Kleiber and S. Kotz, Statistical Size Distributions in Economics and Actuarial Sciences, Wiley (2003).
  27. K. Krishnamoorthy and M. Lee, Inference for functions of parameters in discrete distributions based on fiducial approach : Binomial and Poisson cases. J. Statist. Plann. Inference 140 (2009) 1182–1192. [CrossRef]
  28. K. Krishnamoorthy and J. Thomson, A more powerful test for comparing two Poisson means. J. Statist. Plann. Inference 119 (2004) 23–35. [CrossRef] [MathSciNet]
  29. B. Lecoutre, And if you were a Bayesian without knowing it? Bayesian inference and maximum entropy methods in science and engineering. AIP Conf. Proc. 872 (2006) 15–22. [CrossRef]
  30. E.L. Lehmann and J.P. Romano, Testing Statistical Hypotheses, 3rd edition. Springer, New York (2005).
  31. B. Liseo, Elimination of Nuisance Parameters with Reference Noninformative Priors. Technical Report #90-58C, Purdue University, Department of Statistics (1990).
  32. R.M. Price and D.G. Bonett, Estimating the ratio of two Poisson rates. Comput. Stat. Data Anal. 34 (2000) 345–356. [CrossRef]
  33. C. Robert, The Bayesian Choice : From Decision-Theoretic Foundations to Computational Implementation, 2nd edition. Springer Texts in Statistics (2001).
  34. J. Robins and L. Wasserman, Conditioning, likelihood and coherence : A review of some foundational concepts. J. Amer. Statist. Assoc. 95 (2000) 1340–1346. [CrossRef] [MathSciNet]
  35. H. Sahai and A. Khurshid, Confidence intervals for the ratio of two Poisson means. Math. Sci. 18 (1993) 43–50. [MathSciNet]
  36. J.D. Stamey, D.M. Young, T.L. Bratcher, Bayesian sample-size determination for one and two Poisson rate parameters with applications to quality control. J. Appl. Stat. 33 (2006) 583–594. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.