Free Access
Issue
ESAIM: PS
Volume 16, 2012
Page(s) 375 - 398
DOI https://doi.org/10.1051/ps/2010018
Published online 03 September 2012
  1. N. Balakrishnan, N.L. Johnson and S. Kotz, Continuous Univariate Distributions, 2nd edition. John Wiley, New York 1 (1995). [Google Scholar]
  2. M.J. Bayarri and J. Berger, The interplay of Bayesian and frequentist analysis. Stat. Sci. 19 (2004) 58–80. [CrossRef] [Google Scholar]
  3. J.O. Berger and J.M. Bernardo, Ordered Group Reference Priors With Applications to Multinomial and Variance Component Problems. Technical Report Dept. of Statistics, Purdue University (1989). [Google Scholar]
  4. J.O. Berger and J.M. Bernardo, Estimating a product of means : Bayesian analysis with reference priors. J. Amer. Statist. Assoc. 84 (1989) 200–207. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.O. Berger and J.M. Bernardo, Ordered group reference priors, with applications to multinomial problems. Biometrika 79 (1992) 25–37. [CrossRef] [Google Scholar]
  6. J.O. Berger and J.M. Bernardo, On the development of reference priors, edited by J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith, Bayesian Statistics. University Press, Oxford (with discussion) 4 (1992) 35–60. [Google Scholar]
  7. J.O. Berger and D. Sun, Reference priors with partial information. Biometrika 85 (1998) 55–71. [CrossRef] [Google Scholar]
  8. J.O. Berger and R. Yang, A catalog of noninformative priors. ISDS Discussion Paper, Duke Univ. (1997) 97–42. [Google Scholar]
  9. J.O. Berger, J.M. Bernardo and D. Sun, The formal definition of reference priors. Ann. Stat. 37 (2009). [CrossRef] [Google Scholar]
  10. J.M. Bernardo, Reference posterior distributions for Bayesian inference (with discussion). J. R. Stat. Soc. B 41 (1979) 113–148. [Google Scholar]
  11. J.M. Bernardo, Noninformative priors do not exist : a discussion. (with discussion) J. Stat. Plann. Inference 65 (1997) 159–189. [CrossRef] [Google Scholar]
  12. J.M. Bernardo, Reference Analysis, edited by D.K. Dey and C.R. Rao. Handbook of Stat. 25 (2005) 17–90. [Google Scholar]
  13. J.M. Bernardo, Intrinsic credible regions : an objective Bayesian approach to interval estimation (with discussion). Test 14 (2005) 317–384. [CrossRef] [MathSciNet] [Google Scholar]
  14. J.M. Bernardo and J.M. Ramon, An introduction to Bayesian reference analysis : inference on the ratio of multinomial parameters. J. R. Stat. Soc. D 47 (1998) 101–135. [CrossRef] [Google Scholar]
  15. J.M. Bernardo and A.F.M. Smith, Bayesian Theory. Wiley, Chichester (1994). [Google Scholar]
  16. D.A. Berry, M.C. Wolff and D. Sack, Decision making during a phase III randomized controlled trial. Control. Clin. Trials 15 (1994) 360–378. [CrossRef] [PubMed] [Google Scholar]
  17. L.D. Brown, T.T. Cai and A. DasGupta, Interval estimation for a binomial proportion (with discussion). Stat. Sci. 16 (2001) 101–133. [Google Scholar]
  18. L.D. Brown, T.T. Cai and A. DasGupta, Confidence intervals for a binomial proportion and edgeworth expansions. Ann. Stat. 30 (2002) 160–201. [CrossRef] [Google Scholar]
  19. H. Chu and M.E. Halloran, Bayesian estimation of vaccine efficacy. Clin. Trials 1 (2004) 306–314. [CrossRef] [PubMed] [Google Scholar]
  20. R.D. Cousins, Improved central confidence intervals for the ratio of Poisson means. Nucl. Instrum. Methods Phys. Res. A 417 (1998) 391–399. [CrossRef] [Google Scholar]
  21. G.S. Datta and R. Mukerjee, Probability Matching Priors : Higher Order Asymptotics. Springer, New-York (2004). [Google Scholar]
  22. M. Ewell, Comparing methods for calculating confidence intervals for vaccine efficacy. Stat. Med. 15 (1996) 2379–2392. [CrossRef] [PubMed] [Google Scholar]
  23. M.E. Halloran, I.M.Jr. Longini and C.J. Struchiner, Design and interpretation of vaccine field studies. Epidemiol. Rev. 21 (1999) 73–88. [CrossRef] [PubMed] [Google Scholar]
  24. N.L. Johnson, A.W. Kemp and S. Kotz, Univariate Discrete Distributions, 3rd edition. John Wiley, New York (2005). [Google Scholar]
  25. R.E. Kass and L. Wasserman, The selection of prior distributions by formal rules. J. Am. Statist. Assoc. 91 (1996) 1343–1370. [NASA ADS] [CrossRef] [Google Scholar]
  26. C. Kleiber and S. Kotz, Statistical Size Distributions in Economics and Actuarial Sciences, Wiley (2003). [Google Scholar]
  27. K. Krishnamoorthy and M. Lee, Inference for functions of parameters in discrete distributions based on fiducial approach : Binomial and Poisson cases. J. Statist. Plann. Inference 140 (2009) 1182–1192. [CrossRef] [Google Scholar]
  28. K. Krishnamoorthy and J. Thomson, A more powerful test for comparing two Poisson means. J. Statist. Plann. Inference 119 (2004) 23–35. [CrossRef] [MathSciNet] [Google Scholar]
  29. B. Lecoutre, And if you were a Bayesian without knowing it? Bayesian inference and maximum entropy methods in science and engineering. AIP Conf. Proc. 872 (2006) 15–22. [CrossRef] [Google Scholar]
  30. E.L. Lehmann and J.P. Romano, Testing Statistical Hypotheses, 3rd edition. Springer, New York (2005). [Google Scholar]
  31. B. Liseo, Elimination of Nuisance Parameters with Reference Noninformative Priors. Technical Report #90-58C, Purdue University, Department of Statistics (1990). [Google Scholar]
  32. R.M. Price and D.G. Bonett, Estimating the ratio of two Poisson rates. Comput. Stat. Data Anal. 34 (2000) 345–356. [CrossRef] [Google Scholar]
  33. C. Robert, The Bayesian Choice : From Decision-Theoretic Foundations to Computational Implementation, 2nd edition. Springer Texts in Statistics (2001). [Google Scholar]
  34. J. Robins and L. Wasserman, Conditioning, likelihood and coherence : A review of some foundational concepts. J. Amer. Statist. Assoc. 95 (2000) 1340–1346. [CrossRef] [MathSciNet] [Google Scholar]
  35. H. Sahai and A. Khurshid, Confidence intervals for the ratio of two Poisson means. Math. Sci. 18 (1993) 43–50. [MathSciNet] [Google Scholar]
  36. J.D. Stamey, D.M. Young, T.L. Bratcher, Bayesian sample-size determination for one and two Poisson rate parameters with applications to quality control. J. Appl. Stat. 33 (2006) 583–594. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.