Free Access
Issue
ESAIM: PS
Volume 16, 2012
Page(s) 61 - 85
DOI https://doi.org/10.1051/ps/2010012
Published online 02 July 2012
  1. S. Arlot, Model selection by resampling penalization. Electron. J. Statist. 3 (2009) 557–624. [CrossRef] [Google Scholar]
  2. S. Arlot and P. Massart, Data-driven calibration of penalties for least-squares regression. J. Mach. Learn. Res. 10 (2009) 245–279. [Google Scholar]
  3. S. Arlot, G. Blanchard and E. Roquain, Resampling-based confidence regions and multiple tests for a correlated random vector, in Learning theory. Lect. Notes Comput. Sci. 4539 (2007) 127–141. [CrossRef] [Google Scholar]
  4. Y. Baraud, Confidence balls in Gaussian regression. Ann. Statist. 32 (2004) 528–551. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Beran, REACT scatterplot smoothers : superefficiency through basis economy. J. Amer. Statist. Assoc. 95 (2000) 155–171. [CrossRef] [MathSciNet] [Google Scholar]
  6. R. Beran and L. Dümbgen, Modulation of estimators and confidence sets. Ann. Statist. 26 (1998) 1826–1856. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Birgé and P. Massart, From model selection to adaptive estimation, in Festschrift for Lucien Le Cam. Springer, New York (1997) 55–87. [Google Scholar]
  8. L. Birgé and P. Massart, Minimal penalties for Gaussian model selection. Probab. Theory Relat. Fields 138 (2007) 33–73. [CrossRef] [MathSciNet] [Google Scholar]
  9. T. Cai and M.G. Low, Adaptive confidence balls. Ann. Statist. 34 (2006) 202–228. [CrossRef] [MathSciNet] [Google Scholar]
  10. B. Efron, Bootstrap methods : another look at the jackknife. Ann. Statist. 7 (1979) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Fromont and B. Laurent, Adaptive goodness-of-fit tests in a density model. Ann. Statist. 34 (2006) 680–720. [CrossRef] [MathSciNet] [Google Scholar]
  12. C.R. Genovese and L. Wasserman, Confidence sets for nonparametric wavelet regression. Ann. Statist. 33 (2005) 698–729. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. Genovese and L. Wasserman, Adaptive confidence bands. Ann. Statist. 36 (2008) 875–905. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Hoffmann and O. Lepski, Random rates in anisotropic regression. Ann. Statist. 30 (2002) 325–396. With discussions and a rejoinder by the authors. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Houdré and P. Reynaud-Bouret, Exponential inequalities, with constants, for U-statistics of order two, in Stochastic inequalities and applications. Progr. Probab. 56 (2003) 55–69. [Google Scholar]
  16. Y.I. Ingster, Asymptotically minimax hypothesis testing for nonparametric alternatives. I. Math. Methods Stat. 2 (1993) 85–114. [Google Scholar]
  17. Y.I. Ingster, Asymptotically minimax hypothesis testing for nonparametric alternatives. II. Math. Methods Stat. 2 (1993) 171–189. [Google Scholar]
  18. Y.I. Ingster, Asymptotically minimax hypothesis testing for nonparametric alternatives. III. Math. Methods Stat. 2 (1993) 249–268. [Google Scholar]
  19. A. Juditsky and S. Lambert-Lacroix, Nonparametric confidence set estimation. Math. Methods Stat. 12 (2003) 410–428. [Google Scholar]
  20. A. Juditsky and O. Lepski, Evaluation of the accuracy of nonparametric estimators. Math. Methods Stat. 10 (2001) 422–445. Meeting on Mathematical Statistics, Marseille (2000). [Google Scholar]
  21. B. Laurent, Estimation of integral functionnals of a density. Ann. Statist. 24 (1996) 659–681. [CrossRef] [MathSciNet] [Google Scholar]
  22. B. Laurent, Adaptive estimation of a quadratic functional of a density by model selection. ESAIM : PS 9 (2005) 1–18 (electronic). [CrossRef] [EDP Sciences] [Google Scholar]
  23. O.V. Lepski, How to improve the accuracy of estimation. Math. Methods Stat. 8 (1999) 441–486. [Google Scholar]
  24. M. Lerasle, Optimal model selection in density estimation. Preprint (2009). [Google Scholar]
  25. K.C. Li, Honest confidence regions for nonparametric regression. Ann. Statist. 17 (1989) 1001–1008. [CrossRef] [MathSciNet] [Google Scholar]
  26. M.G. Low, On nonparametric confidence intervals. Ann. Statist. 25 (1997) 2547–2554. [CrossRef] [MathSciNet] [Google Scholar]
  27. P. Massart, Concentration inequalities and model selection. Springer, Berlin. Lect. Notes Math. 1896 (2007). Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour (2003). With a foreword by Jean Picard. [Google Scholar]
  28. J. Robins and A. van der Vaart, Adaptive nonparametric confidence sets. Ann. Statist. 34 (2006) 229–253. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.