Free Access
Issue
ESAIM: PS
Volume 16, 2012
Page(s) 61 - 85
DOI https://doi.org/10.1051/ps/2010012
Published online 02 July 2012
  1. S. Arlot, Model selection by resampling penalization. Electron. J. Statist. 3 (2009) 557–624. [CrossRef]
  2. S. Arlot and P. Massart, Data-driven calibration of penalties for least-squares regression. J. Mach. Learn. Res. 10 (2009) 245–279.
  3. S. Arlot, G. Blanchard and E. Roquain, Resampling-based confidence regions and multiple tests for a correlated random vector, in Learning theory. Lect. Notes Comput. Sci. 4539 (2007) 127–141. [CrossRef]
  4. Y. Baraud, Confidence balls in Gaussian regression. Ann. Statist. 32 (2004) 528–551. [CrossRef] [MathSciNet]
  5. R. Beran, REACT scatterplot smoothers : superefficiency through basis economy. J. Amer. Statist. Assoc. 95 (2000) 155–171. [CrossRef] [MathSciNet]
  6. R. Beran and L. Dümbgen, Modulation of estimators and confidence sets. Ann. Statist. 26 (1998) 1826–1856. [CrossRef] [MathSciNet]
  7. L. Birgé and P. Massart, From model selection to adaptive estimation, in Festschrift for Lucien Le Cam. Springer, New York (1997) 55–87.
  8. L. Birgé and P. Massart, Minimal penalties for Gaussian model selection. Probab. Theory Relat. Fields 138 (2007) 33–73. [CrossRef] [MathSciNet]
  9. T. Cai and M.G. Low, Adaptive confidence balls. Ann. Statist. 34 (2006) 202–228. [CrossRef] [MathSciNet]
  10. B. Efron, Bootstrap methods : another look at the jackknife. Ann. Statist. 7 (1979) 1–26. [CrossRef] [MathSciNet]
  11. M. Fromont and B. Laurent, Adaptive goodness-of-fit tests in a density model. Ann. Statist. 34 (2006) 680–720. [CrossRef] [MathSciNet]
  12. C.R. Genovese and L. Wasserman, Confidence sets for nonparametric wavelet regression. Ann. Statist. 33 (2005) 698–729. [CrossRef] [MathSciNet]
  13. C. Genovese and L. Wasserman, Adaptive confidence bands. Ann. Statist. 36 (2008) 875–905. [CrossRef] [MathSciNet]
  14. M. Hoffmann and O. Lepski, Random rates in anisotropic regression. Ann. Statist. 30 (2002) 325–396. With discussions and a rejoinder by the authors. [CrossRef] [MathSciNet]
  15. C. Houdré and P. Reynaud-Bouret, Exponential inequalities, with constants, for U-statistics of order two, in Stochastic inequalities and applications. Progr. Probab. 56 (2003) 55–69.
  16. Y.I. Ingster, Asymptotically minimax hypothesis testing for nonparametric alternatives. I. Math. Methods Stat. 2 (1993) 85–114.
  17. Y.I. Ingster, Asymptotically minimax hypothesis testing for nonparametric alternatives. II. Math. Methods Stat. 2 (1993) 171–189.
  18. Y.I. Ingster, Asymptotically minimax hypothesis testing for nonparametric alternatives. III. Math. Methods Stat. 2 (1993) 249–268.
  19. A. Juditsky and S. Lambert-Lacroix, Nonparametric confidence set estimation. Math. Methods Stat. 12 (2003) 410–428.
  20. A. Juditsky and O. Lepski, Evaluation of the accuracy of nonparametric estimators. Math. Methods Stat. 10 (2001) 422–445. Meeting on Mathematical Statistics, Marseille (2000).
  21. B. Laurent, Estimation of integral functionnals of a density. Ann. Statist. 24 (1996) 659–681. [CrossRef] [MathSciNet]
  22. B. Laurent, Adaptive estimation of a quadratic functional of a density by model selection. ESAIM : PS 9 (2005) 1–18 (electronic). [CrossRef] [EDP Sciences]
  23. O.V. Lepski, How to improve the accuracy of estimation. Math. Methods Stat. 8 (1999) 441–486.
  24. M. Lerasle, Optimal model selection in density estimation. Preprint (2009).
  25. K.C. Li, Honest confidence regions for nonparametric regression. Ann. Statist. 17 (1989) 1001–1008. [CrossRef] [MathSciNet]
  26. M.G. Low, On nonparametric confidence intervals. Ann. Statist. 25 (1997) 2547–2554. [CrossRef] [MathSciNet]
  27. P. Massart, Concentration inequalities and model selection. Springer, Berlin. Lect. Notes Math. 1896 (2007). Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour (2003). With a foreword by Jean Picard.
  28. J. Robins and A. van der Vaart, Adaptive nonparametric confidence sets. Ann. Statist. 34 (2006) 229–253. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.