Free Access
Issue
ESAIM: PS
Volume 15, 2011
Page(s) 83 - 109
DOI https://doi.org/10.1051/ps/2009010
Published online 05 January 2012
  1. S. Asmussen, Risk theory in a Markovian environment. Scand. Actuar. J. (1989) 69–100. [Google Scholar]
  2. S. Asmussen, Ruin probabilities. Advanced Series on Statistical Science & Applied Probability, Vol. 2, World Scientific Publishing Co. Inc., River Edge, NJ (2000). [Google Scholar]
  3. S. Asmussen, Applied probability and queues, second edn., Applications of Mathematics (New York), Vol. 51, Springer-Verlag, New York (2003), Stochastic Modelling and Applied Probability. [Google Scholar]
  4. S. Asmussen and M. Pihlsgård, Loss rates for Lévy processes with two reflecting barriers. Math. Oper. Res. 32 (2007) 308–321. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Benaim and P. Friz, Smile asymptotics. II. Models with known moment generating functions. J. Appl. Probab. 45 (2008) 16–32. [CrossRef] [Google Scholar]
  6. P. Billingsley, Convergence of probability measures, Wiley Inter-Science (1999). [Google Scholar]
  7. P.T. Brady, A statistical analysis of on-off patterns in 16 conversations. The Bell Systems Technical Journal 47 (1968) 73–91. [CrossRef] [Google Scholar]
  8. L. Breuer, On Markov-additive jump processes. Queueing Syst. 40 (2002) 75–91. [CrossRef] [MathSciNet] [Google Scholar]
  9. N.R. Chaganty, Large deviations for joint distributions and statistical applications. Sankhyā Ser. A 59 (1997) 147–166. [Google Scholar]
  10. E. Çinlar, Markov additive processes. I, II, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 24 (1972) 85–93; E. Çinlar, Markov additive processes. I, II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 (1972) 95–121. [Google Scholar]
  11. A. Dembo and T. Zajic, Large deviations: from empirical mean and measure to partial sums process. Stochastic Process. Appl. 57 (1995) 191–224. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Dembo and O. Zeitouni, Large deviation techniques and applications. Springer (1998). [Google Scholar]
  13. J-D. Deuschel and D.W. Stroock, Large deviations. Academic Press (1989). [Google Scholar]
  14. J.H. Dshalalow, Characterization of modulated Cox measures on topological spaces. Int. J. Appl. Math. Stat. 11 (2007) 21–37. [MathSciNet] [Google Scholar]
  15. J.H. Dshalalow and G. Russell, On a single-server queue with fixed accumulation level, state dependent service, and semi-Markov modulated input flow. Internat. J. Math. Math. Sci. 15 (1992) 593–600. [CrossRef] [MathSciNet] [Google Scholar]
  16. K.R. Duffy and A. Sapozhnikov, The large deviation principle for the on-off Weibull sojourn process. J. Appl. Probab. 45 (2008) 107–117. [CrossRef] [Google Scholar]
  17. A. Ganesh, N. O'Connell and D. Wischik, Big queues, Lecture Notes in Mathematics, Vol. 1838. Springer-Verlag, Berlin (2004). [Google Scholar]
  18. A.J. Ganesh and N. O'Connell, A large deviation principle with queueing applications. Stochastics and Stochastic Reports 73 (2002) 25–35. [CrossRef] [Google Scholar]
  19. N. Gantert, Functional Erdős-Renyi laws for semiexponential random variables. Ann. Probab. 26 (1998) 1356–1369. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Garcia, An extension of the contraction principle. J. Theoret. Probab. 17 (2004) 403–434. [CrossRef] [MathSciNet] [Google Scholar]
  21. H. Heffes and D.M. Luncantoni, A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance. IEEE Journal on Selected Areas in Communications 4 (1986) 856–868. [CrossRef] [Google Scholar]
  22. I. Iscoe, P. Ney and E. Nummelin, Large deviations of uniformly recurrent Markov additive processes. Adv. in Appl. Math. 6 (1985) 373–412. [CrossRef] [MathSciNet] [Google Scholar]
  23. G. Latouche, M. Remiche and P. Taylor, Transient Markov arrival processes. Ann. Appl. Probab. 13 (2003) 628–640. [CrossRef] [Google Scholar]
  24. H.H. Lee and C.K. Un, A study of on-off characteristics of conversation speech. IEEE Transactions on Communications 34 (1986) 630–636. [CrossRef] [Google Scholar]
  25. T. Lehtonen and H. Nyrhinen, On asymptotically efficient simulation of ruin probabilities in a Markovian environment. Scand. Actuar. J. (1992) 60–75. MR1193671 (93h:60144) [Google Scholar]
  26. K. Majewski, Single class queueing networks with discrete and fluid customers on the time interval ℝ. Queueing Systems 36 (2000) 405–435. [CrossRef] [MathSciNet] [Google Scholar]
  27. A.P. Markopoulou, F.A. Tobagi and M.J. Karam, Assessing the quality of voice communications over Internet backbones. IEEE Transactions on Networking 11 (2003) 747–760. [CrossRef] [Google Scholar]
  28. A.A. Mogulskii, Large deviations for trajectories of multi-dimensional random walks. Th. Prob. Appl. 21 (1976) 300–315. [CrossRef] [Google Scholar]
  29. S.V. Nagaev, Large deviations of sums of independent random variables. Ann. Probab. 7 (1979) 745–789. [CrossRef] [MathSciNet] [Google Scholar]
  30. J. Neveu, Une generalisation des processus à accroissements positifs independants. Abh. Math. Sem. Univ. Hamburg 25 (1961) 36–61. [CrossRef] [MathSciNet] [Google Scholar]
  31. P. Ney and E. Nummelin, Markov additive processes. I. Eigenvalue properties and limit theorems. Ann. Probab. 15 (1987) 561–592. [Google Scholar]
  32. P. Ney and E. Nummelin, Markov additive processes II. Large deviations. Ann. Probab. 15 (1987) 593–609. [CrossRef] [MathSciNet] [Google Scholar]
  33. S. Özekici and R. Soyer, Semi-Markov modulated Poisson process: probabilistic and statistical analysis. Math. Methods Oper. Res. 64 (2006) 125–144. [CrossRef] [MathSciNet] [Google Scholar]
  34. A. Pacheco and N.U. Prabhu, Markov-additive processes of arrivals, Advances in queueing, Probab. Stochastics Ser., CRC, Boca Raton, FL (1995) 167–194. [Google Scholar]
  35. A. Puhalskii, Large deviation analysis of the single server queue. Queueing Systems 21 (1995) 5–66. [CrossRef] [Google Scholar]
  36. A. Puhalskii and W. Whitt, Functional large deviation principles for first-passage-time proc esses. Ann. Appl. Probab. 7 (1997) 362–381. [CrossRef] [Google Scholar]
  37. U. Rieder and N. Bäuerle, Portfolio optimization with unobservable Markov-modulated drift process. J. Appl. Probab. 42 (2005) 362–378. [CrossRef] [Google Scholar]
  38. R.T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J. (1970). [Google Scholar]
  39. International Telecommunication Union, Recommendation ITU-T P.59, Artificial Conversational Speech (March 1993). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.