Free Access
Issue
ESAIM: PS
Volume 15, 2011
Page(s) 83 - 109
DOI https://doi.org/10.1051/ps/2009010
Published online 05 January 2012
  1. S. Asmussen, Risk theory in a Markovian environment. Scand. Actuar. J. (1989) 69–100.
  2. S. Asmussen, Ruin probabilities. Advanced Series on Statistical Science & Applied Probability, Vol. 2, World Scientific Publishing Co. Inc., River Edge, NJ (2000).
  3. S. Asmussen, Applied probability and queues, second edn., Applications of Mathematics (New York), Vol. 51, Springer-Verlag, New York (2003), Stochastic Modelling and Applied Probability.
  4. S. Asmussen and M. Pihlsgård, Loss rates for Lévy processes with two reflecting barriers. Math. Oper. Res. 32 (2007) 308–321. [CrossRef] [MathSciNet]
  5. S. Benaim and P. Friz, Smile asymptotics. II. Models with known moment generating functions. J. Appl. Probab. 45 (2008) 16–32. [CrossRef]
  6. P. Billingsley, Convergence of probability measures, Wiley Inter-Science (1999).
  7. P.T. Brady, A statistical analysis of on-off patterns in 16 conversations. The Bell Systems Technical Journal 47 (1968) 73–91. [CrossRef]
  8. L. Breuer, On Markov-additive jump processes. Queueing Syst. 40 (2002) 75–91. [CrossRef] [MathSciNet]
  9. N.R. Chaganty, Large deviations for joint distributions and statistical applications. Sankhyā Ser. A 59 (1997) 147–166.
  10. E. Çinlar, Markov additive processes. I, II, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 24 (1972) 85–93; E. Çinlar, Markov additive processes. I, II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 (1972) 95–121.
  11. A. Dembo and T. Zajic, Large deviations: from empirical mean and measure to partial sums process. Stochastic Process. Appl. 57 (1995) 191–224. [CrossRef] [MathSciNet]
  12. A. Dembo and O. Zeitouni, Large deviation techniques and applications. Springer (1998).
  13. J-D. Deuschel and D.W. Stroock, Large deviations. Academic Press (1989).
  14. J.H. Dshalalow, Characterization of modulated Cox measures on topological spaces. Int. J. Appl. Math. Stat. 11 (2007) 21–37. [MathSciNet]
  15. J.H. Dshalalow and G. Russell, On a single-server queue with fixed accumulation level, state dependent service, and semi-Markov modulated input flow. Internat. J. Math. Math. Sci. 15 (1992) 593–600. [CrossRef] [MathSciNet]
  16. K.R. Duffy and A. Sapozhnikov, The large deviation principle for the on-off Weibull sojourn process. J. Appl. Probab. 45 (2008) 107–117. [CrossRef]
  17. A. Ganesh, N. O'Connell and D. Wischik, Big queues, Lecture Notes in Mathematics, Vol. 1838. Springer-Verlag, Berlin (2004).
  18. A.J. Ganesh and N. O'Connell, A large deviation principle with queueing applications. Stochastics and Stochastic Reports 73 (2002) 25–35. [CrossRef]
  19. N. Gantert, Functional Erdős-Renyi laws for semiexponential random variables. Ann. Probab. 26 (1998) 1356–1369. [CrossRef] [MathSciNet]
  20. J. Garcia, An extension of the contraction principle. J. Theoret. Probab. 17 (2004) 403–434. [CrossRef] [MathSciNet]
  21. H. Heffes and D.M. Luncantoni, A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance. IEEE Journal on Selected Areas in Communications 4 (1986) 856–868. [CrossRef]
  22. I. Iscoe, P. Ney and E. Nummelin, Large deviations of uniformly recurrent Markov additive processes. Adv. in Appl. Math. 6 (1985) 373–412. [CrossRef] [MathSciNet]
  23. G. Latouche, M. Remiche and P. Taylor, Transient Markov arrival processes. Ann. Appl. Probab. 13 (2003) 628–640. [CrossRef]
  24. H.H. Lee and C.K. Un, A study of on-off characteristics of conversation speech. IEEE Transactions on Communications 34 (1986) 630–636. [CrossRef]
  25. T. Lehtonen and H. Nyrhinen, On asymptotically efficient simulation of ruin probabilities in a Markovian environment. Scand. Actuar. J. (1992) 60–75. MR1193671 (93h:60144)
  26. K. Majewski, Single class queueing networks with discrete and fluid customers on the time interval ℝ. Queueing Systems 36 (2000) 405–435. [CrossRef] [MathSciNet]
  27. A.P. Markopoulou, F.A. Tobagi and M.J. Karam, Assessing the quality of voice communications over Internet backbones. IEEE Transactions on Networking 11 (2003) 747–760. [CrossRef]
  28. A.A. Mogulskii, Large deviations for trajectories of multi-dimensional random walks. Th. Prob. Appl. 21 (1976) 300–315. [CrossRef]
  29. S.V. Nagaev, Large deviations of sums of independent random variables. Ann. Probab. 7 (1979) 745–789. [CrossRef] [MathSciNet]
  30. J. Neveu, Une generalisation des processus à accroissements positifs independants. Abh. Math. Sem. Univ. Hamburg 25 (1961) 36–61. [CrossRef] [MathSciNet]
  31. P. Ney and E. Nummelin, Markov additive processes. I. Eigenvalue properties and limit theorems. Ann. Probab. 15 (1987) 561–592.
  32. P. Ney and E. Nummelin, Markov additive processes II. Large deviations. Ann. Probab. 15 (1987) 593–609. [CrossRef] [MathSciNet]
  33. S. Özekici and R. Soyer, Semi-Markov modulated Poisson process: probabilistic and statistical analysis. Math. Methods Oper. Res. 64 (2006) 125–144. [CrossRef] [MathSciNet]
  34. A. Pacheco and N.U. Prabhu, Markov-additive processes of arrivals, Advances in queueing, Probab. Stochastics Ser., CRC, Boca Raton, FL (1995) 167–194.
  35. A. Puhalskii, Large deviation analysis of the single server queue. Queueing Systems 21 (1995) 5–66. [CrossRef]
  36. A. Puhalskii and W. Whitt, Functional large deviation principles for first-passage-time proc esses. Ann. Appl. Probab. 7 (1997) 362–381. [CrossRef]
  37. U. Rieder and N. Bäuerle, Portfolio optimization with unobservable Markov-modulated drift process. J. Appl. Probab. 42 (2005) 362–378. [CrossRef]
  38. R.T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J. (1970).
  39. International Telecommunication Union, Recommendation ITU-T P.59, Artificial Conversational Speech (March 1993).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.