Free Access
Volume 14, 2010
Page(s) 210 - 255
Published online 29 July 2010
  1. B. Anderson, J.M. Ash, R. Jones, D.G. Rider and B. Saffari, Exponential sums with coefficients 0 or 1 and concentrated Lp norms. Ann. Inst. Fourier 57 (2007) 1377–1404. [Google Scholar]
  2. V.V. Anh and N.N. Leonenko, Spectral analysis of fractional kinetic equations with random data. J. Statist. Phys. 104 (2001) 1349–1387. [Google Scholar]
  3. V.V. Anh and N.N. Leonenko, Renormalization and homogenization of fractional diffusion equations with random data. Probab. Theory Relat. Fields 124 (2002) 381–408. [Google Scholar]
  4. V.V. Anh, J.M. Angulo and M.D. Ruiz-Medina, Possible long-range dependence in fractional random fields. J. Statist. Plann. Infer. 80 (1999) 95–110. [Google Scholar]
  5. V.V. Anh, C.C. Heyde and N.N. Leonenko, Dynamic models of long-memory processes driven by Lévy noise. J. Appl. Probab. 39 (2002) 730–747. [CrossRef] [MathSciNet] [Google Scholar]
  6. V.V. Anh, N.N. Leonenko and R. McVinish, Models for fractional Riesz-Bessel motion and related processes. Fractals 9 (2001) 329–346. [CrossRef] [Google Scholar]
  7. V.V. Anh, N.N. Leonenko and L.M. Sakhno, Higher-order spectral densities of fractional random fields. J. Stat. Phys. 111 (2003) 789–814. [CrossRef] [Google Scholar]
  8. V.V. Anh, N.N. Leonenko and L.M. Sakhno, Quasi-likelihood-based higher-order spectral estimation of random fields with possible long-range dependence. Stochastic Methods and their Applications. J. Appl. Probab. A 41 (2004) 35–53. [CrossRef] [Google Scholar]
  9. V.V. Anh, N.N. Leonenko and L.M. Sakhno, On a class of minimum contrast estimators. J. Statist. Plann. Infer. 123 (2004) 161–185. [CrossRef] [Google Scholar]
  10. F. Avram, On Bilinear Forms in Gaussian Random Variables and Toeplitz Matrices. Probab. Theory Relat. Fields 79 (1988) 37–45. [Google Scholar]
  11. F. Avram, Generalized Szegö Theorems and asymptotics of cumulants by graphical methods. Trans. Amer. Math. Soc. 330 (1992) 637–649. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Avram and L. Brown, A Generalized Hölder Inequality and a Generalized Szegö Theorem. Proc. Amer. Math. Soc. 107 (1989) 687–695. [MathSciNet] [Google Scholar]
  13. F. Avram and R. Fox, Central limit theorems for sums of Wick products of stationary sequences. Trans. Amer. Math. Soc. 330 (1992) 651–663. [CrossRef] [MathSciNet] [Google Scholar]
  14. F. Avram and M.S. Taqqu, Noncentral limit theorems and Appell polynomials. Ann. Probab. 15 (1987) 767–775. [CrossRef] [MathSciNet] [Google Scholar]
  15. F. Avram and M.S. Taqqu, Hölder's Inequality for Functions of Linearly Dependent Arguments. SIAM J. Math. Anal. 20 (1989) 1484–1489. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Avram and M.S. Taqqu, On a Szegö type limit theorem and the asymptotic theory of random sums, integrals and quadratic forms. Dependence in probability and statistics, Lect. Notes Statist. 187. Springer, New York (2006) 259–286. [Google Scholar]
  17. K. Ball, Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. 44 (1991) 351–359. [CrossRef] [MathSciNet] [Google Scholar]
  18. F. Barthe, On a reverse form of the Brascamp-Lieb inequality. Inventiones Mathematicae 134 (2005) 335–361. [Google Scholar]
  19. J. Bennett, A. Carbery, M. Christ and T. Tao, The Brascamp-Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal. 17 (2008) 1343–1415. [Google Scholar]
  20. R. Bentkus, On the error of the estimate of the spectral function of a stationary process. Lietuvos Matematikos Rinkinys 12 (1972) 55–71 (In Russian). [Google Scholar]
  21. R. Bentkus, and R. Rutkauskas, On the asymptotics of the first two moments of second order spectral estimators. Liet. Mat. Rink. 13 (1973) 29–45. [Google Scholar]
  22. J. Beran, Statistics for Long-Memory Processes. Chapman & Hall, New York (1994). [Google Scholar]
  23. H.J. Brascamp and E. Lieb, Best constants in Young's inequality, its converse, and its generalization to more than three functions. Adv. Math. 20 (1976) 151–173. [CrossRef] [Google Scholar]
  24. P. Breuer and P. Major, Central limit theorems for nonlinear functionals of Gaussian fields. J. Multiv. Anal. 13 (1983) 425–441. [Google Scholar]
  25. P.J. Brockwell, Representations of continuous-time ARMA processes. Stochastic Methods and their Applications. J. Appl. Probab. A 41 (2004) 375–382. [CrossRef] [Google Scholar]
  26. E.A. Carlen, E.H. Lieb and M. Loss, A sharp analog of Young's inequality on Sn and related entropy inequalities. J. Geom. Anal. 14 (2004) 487–520. [MathSciNet] [Google Scholar]
  27. R.L. Dobrushin and P. Major, Non-central limit theorems for non-linear functions of Gaussian fields. Z. Wahrscheinlichkeitstheorie Verw. Geb. 50 (1979) 27–52. [Google Scholar]
  28. R. Fox and M.S. Taqqu, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 (1986) 517–532. [CrossRef] [MathSciNet] [Google Scholar]
  29. R. Fox and M.S. Taqqu, Central limit theorems for quadratic forms in random variables having long-range dependence. Probab. Theory Relat. Fields 74 (1987) 213–240. [CrossRef] [Google Scholar]
  30. E. Friedgut, Hypergraphs, entropy, and inequalities. Amer. Math. Monthly 111 (2004) 749–760. [CrossRef] [MathSciNet] [Google Scholar]
  31. J. Gao, V.V. Anh and C.C. Heyde, Statistical estimation of nonstationary Gaussian process with long-range dependence and intermittency. Stoch. Process. Appl. 99 (2002) 295–321. [CrossRef] [Google Scholar]
  32. R. Gay and C.C. Heyde, On a class of random field models which allows long range dependence. Biometrika 77 (1990) 401–403. [CrossRef] [MathSciNet] [Google Scholar]
  33. M.S. Ginovian, On Toeplitz type quadratic functionals of stationary Gaussian processes. Probab. Theory Relat. Fields 100 (1994) 395–406. [CrossRef] [Google Scholar]
  34. M.S. Ginovian and A.A. Sahakyan, Limit theorems for Toeplitz quadratic functionals of continuous-time stationary processes. Probab. Theory Relat. Fields 138 (2007) 551–579. [CrossRef] [Google Scholar]
  35. L. Giraitis, Central limit theorem for functionals of linear processes. Lithuanian Math. J. 25 (1985) 43–57. [Google Scholar]
  36. L. Giraitis and D. Surgailis, Multivariate Appell polynomials and the central limit theorem, in Dependence in Probability and Statistics. Edited by E. Eberlein and M.S. Taqqu. Birkhäuser, New York (1986) 21–71. [Google Scholar]
  37. L. Giraitis and D. Surgailis, A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle estimate. Probab. Theory Relat. Fields 86 (1990) 87-104. [CrossRef] [MathSciNet] [Google Scholar]
  38. L. Giraitis and M.S. Taqqu, Limit theorems for bivariate Appell polynomials, Part 1: Central limit theorems. Probab. Theory Relat. Fields 107 (1997) 359–381. [CrossRef] [Google Scholar]
  39. L. Giraitis and M.S. Taqqu, Whittle estimator for finite variance non-Gaussian time series with long memory. Ann. Statist. 27 (1999) 178–203. [CrossRef] [MathSciNet] [Google Scholar]
  40. C.W. Granger and R. Joyeux, An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 10 (1990) 233– 257. [Google Scholar]
  41. V. Grenander and G. Szegö, Toeplitz forms and their applications. University of California Press, Berkeley (1958). [Google Scholar]
  42. C.C. Heyde, Quasi-Likelihood And Its Applications: A General Approach to Optimal Parameter Estimation. Springer-Verlag, New York (1997). [Google Scholar]
  43. C. Heyde and R. Gay, On asymptotic quasi-likelihood. Stoch. Process. Appl. 31 (1989) 223–236. [CrossRef] [Google Scholar]
  44. C. Heyde and R. Gay, Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence. Stoch.c Process. Appl. 45 (1993) 169–182. [CrossRef] [Google Scholar]
  45. J.R.M. Hosking, Fractional differencing. Biometrika 68 (1981) 165–176. [CrossRef] [MathSciNet] [Google Scholar]
  46. H.E. Hurst, Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civil Eng. 116 (1951) 770–808. [Google Scholar]
  47. I.A. Ibragimov, On estimation of the spectral function of a stationary Gaussian process. Theory Probab. Appl. 8 (1963) 391-430. [Google Scholar]
  48. I.A. Ibragimov, On maximum likelihood estimation of parameters of the spectral density of stationary time series. Theory Probab. Appl. 12 (1967) 115–119. [CrossRef] [Google Scholar]
  49. A.V. Ivanov and N.N. Leonenko, Statistical Analysis of Random Processes. Kluwer Academic Publisher, Dordrecht (1989). [Google Scholar]
  50. M. Kelbert, N.N. Leonenko and M.D. Ruiz-Medina, Fractional random fields associated with stochastic fractional heat equation. Adv. Appl. Probab. 37 (2005) 108–133. [CrossRef] [Google Scholar]
  51. S. Kwapien and W.A. Woyczynski, Random Series and Stochastic Integrals: Single and Multiple. Birkhaäser, Boston (1992). [Google Scholar]
  52. N.N. Leonenko and L.M. Sakhno, On the Whittle estimators for some classes of continuous parameter random processes and fields. Stat. Probab. Lett. 76 (2006) 781–795. [CrossRef] [Google Scholar]
  53. E.H. Lieb, Gaussian kernels have only Gaussian maximizers. Invent. Math. 102 (1990) 179–208. [CrossRef] [MathSciNet] [Google Scholar]
  54. V.A. Malyshev, Cluster expansions in lattice models of statistical physics and the quantum theory of fields. Russ. Math. Surveys 35 (1980) 1–62. [CrossRef] [Google Scholar]
  55. I. Niven, Formal power series. Amer. Math. Monthly 76 (1969) 871–889. [CrossRef] [MathSciNet] [Google Scholar]
  56. D. Nualart and G. Peccati, Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (2005) 177–193. [CrossRef] [MathSciNet] [Google Scholar]
  57. J.G. Oxley, Matroid Theory. Oxford University Press, New York (1992). [Google Scholar]
  58. G. Peccati and C.A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités XXXVIII. Lect. Notes Math. 1857 247–262. Springer-Verlag, Berlin (2004). [Google Scholar]
  59. H. Reiter and J.D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups. Oxford University Press, USA (2000). [Google Scholar]
  60. W. Rudin, Real and Comlex Analysis. McGraw-Hill, London, New York (1970). [Google Scholar]
  61. W. Rudin, Functional Analysis. McGraw-Hill, London, New York (1991). [Google Scholar]
  62. G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes. Chapman and Hall, New York (1994). [Google Scholar]
  63. V. Solev and L. Gerville-Reache, A sufficient condition for asymptotic normality of the normalized quadratic form Ψn(f,g). C. R. Acad. Sci. Paris, Ser. I 342 (2006) 971–975. [Google Scholar]
  64. R. Stanley, Enumerative combinatorics. Cambridge University Press (1997). [Google Scholar]
  65. E.M. Stein, Singular Integrals and Differential Properties of Functions. Princeton University Press (1970). [Google Scholar]
  66. B. Sturmfels, Grobner bases and convex polytopes. Volume 8 of University lecture Series. AMS, Providence, RI (1996). [Google Scholar]
  67. D. Surgailis, On Poisson multiple stochastic integral and associated Markov semigroups. Probab. Math. Statist. 3 (1984) 217–239. [MathSciNet] [Google Scholar]
  68. D. Surgailis, Long-range dependence and Appel rank, Ann. Probab. 28 (2000) 478–497. [Google Scholar]
  69. M.S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie Verw. Geb. 50 (1979) 53–83. [Google Scholar]
  70. W.T. Tutte, Matroids and graphs. Trans. Amer. Math. Soc. 90 (1959) 527–552. [MathSciNet] [Google Scholar]
  71. D. Welsh, Matroid Theory. Academic Press, London (1976). [Google Scholar]
  72. W. Willinger, M.S. Taqqu and V. Teverovsky, Stock market prices and long-range dependence. Finance and Stochastics 3 (1999) 1–13. [CrossRef] [Google Scholar]
  73. P. Whittle, Hypothesis Testing in Time Series. Hafner, New York (1951). [Google Scholar]
  74. P. Whittle, Estimation and information in stationary time series. Ark. Mat. 2 (1953) 423–434. [CrossRef] [MathSciNet] [Google Scholar]
  75. A. Zygmund, Trigonometric Series. Volumes I and II. Third edition. Cambridge University Press (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.