Free Access
Issue
ESAIM: PS
Volume 14, 2010
Page(s) 271 - 285
DOI https://doi.org/10.1051/ps:2008029
Published online 29 October 2010
  1. G. Appenzeller, I. Keslassy and N. McKeown, Sizing router buffer. In Proc. of the 2004 Conf. on Applications, Technologies, Architectures, and Protocols for Computers Communications, Portland, OR, USA. ACM New York, NY (2004), pp. 281-292. [Google Scholar]
  2. F. Baccelli, D. McDonald and J. Reynier, A mean-field model for multiple TCP connections through a buffer implementing RED. Performance Evaluation Archive 49 (2002) 77-97. [CrossRef] [Google Scholar]
  3. F. Baccelli, A. Chaintreau, D. De Vleeschauwer and D. McDonald, A mean-field analysis of short lived interacting TCP flows. In Proc. of the Joint Int. Conf. on Measurement and Modeling of Computer Systems, New York, NY, USA, June 10–14, 2004 (SIGMETRICS '04/Performance '04). ACM New York, NY (2004), pp. 343–354. [Google Scholar]
  4. P. Billingsley, Convergence of Probability Measures. Wiley Series in Probability and Statistics, New York (1999). Ch. 3, pp. 109-153 or more precisely, Ch. 3.15, pp. 123-136. [Google Scholar]
  5. H. Cai and D.Y. Eun, Stability of Network Congestion Control with Asynchronous Updates. In Proc. IEEE CDC 2006, San Diego, CA (2006). [Google Scholar]
  6. A. Dhamdere and C. Dovrolis, Open issues in router-buffer sizing. ACM SIGCOMM Comput. Commun. Rev. 36. ACM New York, NY (2006) 87-92. [Google Scholar]
  7. M. Duflo, Random iterative models. Volume 34 of Applications of Mathematics (New York). Springer-Verlag, Berlin (1997). [Google Scholar]
  8. V. Dumas, F. Guilleaumin and P. Robert, A Markovian analysis of Additive-Increase Multiplicative-Decrease (AIMD) algorithms. Adv. Appl. Probab. 34 (2002) 85–111. [CrossRef] [MathSciNet] [Google Scholar]
  9. D.Y. Eun, On the limitation of fluid-based approach for internet congestion control. In Proc. IEEE Int. Conf. on Computer Communications and Networks, ICCCN, San Diego, CA, USA. J. Telecommun. Syst. 34 (2007) 3-11. [Google Scholar]
  10. D.Y. Eun, Fluid approximation of a Markov chain for TCP/AQM with many flows. Preprint. [Google Scholar]
  11. I. Grigorescu and M. Kang, Hydrodynamic Limit for a Fleming-Viot Type System. Stoch. Process. Appl. 110 (2004) 111–143. [CrossRef] [Google Scholar]
  12. I. Grigorescu and M. Kang, Tagged particle limit for a Fleming-Viot type system. Electron. J. Probab. 11 (2006) 311–331 (electronic). [Google Scholar]
  13. I. Grigorescu and M. Kang, Recurrence and ergodicity for a continuous AIMD model. Preprint. [Google Scholar]
  14. F. Guillemin, P. Robert and B. Zwart, AIMD algorithms and exponential functionals. Ann. Appl. Probab. 14 (2004) 90–117. [CrossRef] [MathSciNet] [Google Scholar]
  15. J.K. Hale, Ordinary Differential Equations. Wiley-Interscience, New York (1969). [Google Scholar]
  16. C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems. Springer-Verlag, New York (1999). [Google Scholar]
  17. K. Maulik and B. Zwart, An extension of the square root law of TCP. Ann. Oper. Res. 170 (2009) 217-232. [CrossRef] [MathSciNet] [Google Scholar]
  18. S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Communications and Control Engineering Series. Springer-Verlag, London, Ltd. (1993). [Google Scholar]
  19. T.J. Ott and J. Swanson, Asymptotic behavior of a generalized TCP congestion avoidance algorithm. J. Appl. Probab. 44 (2007) 618–635. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.