Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 181 - 196
DOI https://doi.org/10.1051/ps:2008005
Published online 11 June 2009
  1. H. Akaike, A new look at the statistical model identification. IEEE Trans. Automatic Control 19 (1973) 716–723. [Google Scholar]
  2. A. Azzalini and A.W. Bowman, A look at some data on the Old Faithful geyser. Appl. Statist. 39 (1990) 357–365. [CrossRef] [Google Scholar]
  3. A. Barron, L. Birgé and P. Massart, Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113 (1999) 301–413. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Birgé and Y. Rozenholc, How many bins should be put in a regular histogram? ESAIM: PS 10 (2006) 24–45. [CrossRef] [EDP Sciences] [Google Scholar]
  5. J.E. Daly, Construction of optimal histograms. Commun. Stat., Theory Methods 17 (1988) 2921–2931. [Google Scholar]
  6. P.L. Davies and A. Kovac, Local extremes, runs, strings and multiresolution (with discussion). Ann. Stat. 29 (2001) 1–65. [CrossRef] [Google Scholar]
  7. P.L. Davies and A. Kovac, Densities, spectral densities and modality. Ann. Stat. 32 (2004) 1093–1136. [CrossRef] [Google Scholar]
  8. P.L. Davies and A. Kovac, ftnonpar, R-package, version 0.1-82, http://www.r-project.org (2008). [Google Scholar]
  9. L. Devroye and L. Györfi, Nonparametric density estimation: the L1 view. John Wiley, New York (1985). [Google Scholar]
  10. L. Dümbgen and G. Walther, Multiscale inference about a density. Ann. Stat. 36 (2008) 1758–1785. [CrossRef] [Google Scholar]
  11. J. Engel, The multiresolution histogram. Metrika 46 (1997) 41–57. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. Freedman and P. Diaconis, On the histogram as a density estimator: L2 theory. Z. Wahr. Verw. Geb. 57 (1981) 453–476. [Google Scholar]
  13. I.J. Good and R.A. Gaskins, Density estimation and bump-hunting by the penalizes likelihood method exemplified by scattering and meteorite data. J. Amer. Statist. Assoc. 75 (1980) 42–73. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Hall, Akaike's information criterion and Kullback-Leibler loss for histogram density estimation. Probab. Theory Relat. Fields 85 (1990) 449–467. [CrossRef] [Google Scholar]
  15. P. Hall and E.J. Hannan, On stochastic complexity and nonparametric density estimation. Biometrika 75 (1988) 705–714. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Hall and M.P. Wand, Minimizing L1 distance in nonparametric density estimation. J. Multivariate Anal. 26 (1988) 59–88. [CrossRef] [MathSciNet] [Google Scholar]
  17. K. He and G. Meeden, Selecting the number of bins in a histogram: A decision theoretic approach. J. Stat. Plann. Inference 61 (1997) 49–59. [CrossRef] [Google Scholar]
  18. Y. Kanazawa, An optimal variable cell histogram. Commun. Stat., Theory Methods 17 (1988) 1401–1422. [Google Scholar]
  19. Y. Kanazawa, An optimal variable cell histogram based on the sample spacings. Ann. Stat. 20 (1992) 291–304. [CrossRef] [Google Scholar]
  20. Y. Kanazawa, Hellinger distance and Akaike's information criterion for the histogram. Statist. Probab. Lett. 17 (1993) 293–298. [CrossRef] [MathSciNet] [Google Scholar]
  21. C.R. Loader, Bandwidth selection: classical or plug-in? Ann. Stat. 27 (1999) 415–438. [CrossRef] [Google Scholar]
  22. J.S. Marron and M.P. Wand, Exact mean integrated squared error. Ann. Stat. 20 (1992) 712–736. [Google Scholar]
  23. M. Postman, J.P. Huchra and M.J. Geller, Probes of large-scale structures in the Corona Borealis region. Astrophys. J. 92, (1986) 1238–1247. [Google Scholar]
  24. J. Rissanen, A universal prior for integers and estimation by minimum description length. Ann. Stat. 11 (1983) 416–431. [CrossRef] [Google Scholar]
  25. J. Rissanen, Stochastic Complexity (with discussion). J. R. Statist. Soc. B 49 (1987) 223–239. [Google Scholar]
  26. J. Rissanen, Stochastic complexity in statistical inquiry. World Scientific, New Jersey (1989). [Google Scholar]
  27. J. Rissanen, Fisher information and stochastic complexity. IEEE Trans. Inf. Theory 42 (1996) 40–47. [CrossRef] [Google Scholar]
  28. J. Rissanen, T.P. Speed and B. Yu, Density estimation by stochastic complexity. IEEE Trans. Inf. Theory 38 (1992) 315–323. [CrossRef] [Google Scholar]
  29. K. Roeder, Density estimation with confidence sets exemplified by superclusters and voids in galaxies. J. Amer. Statist. Assoc. 85 (1990) 617–624. [CrossRef] [Google Scholar]
  30. M. Rudemo, Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9 (1982)65–78. [Google Scholar]
  31. G. Schwartz, Estimating the dimension of a model. Ann. Stat. 6 (1978) 461–464. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  32. D.W. Scott, On optimal and data-based histograms. Biometrika 66 (1979) 605–610. [CrossRef] [MathSciNet] [Google Scholar]
  33. D.W. Scott, Multivariate density estimation: theory, practice, and visualization. Wiley, New York (1992). [Google Scholar]
  34. B.W. Silverman, Choosing the window width when estimating a density. Biometrika 65 (1978) 1–11. [CrossRef] [MathSciNet] [Google Scholar]
  35. B.W. Silverman, Density estimation for statistics and data analysis. Chapman and Hall, London (1985). [Google Scholar]
  36. J.S. Simonoff and F. Udina, Measuring the stability of histogram appearance when the anchor position is changed. Comput. Stat. Data Anal. 23 (1997) 335–353. [CrossRef] [Google Scholar]
  37. H. Sturges, The choice of a class-interval. J. Amer. Statist. Assoc. 21 (1926) 65–66. [Google Scholar]
  38. W. Szpankowski, On asymptotics of certain recurrences arising in universal coding. Prob. Inf. Trans. 34 (1998) 142–146. [Google Scholar]
  39. M.P. Wand, Data-based choice of histogram bin width. American Statistician 51 (1997) 59–64. [Google Scholar]
  40. M.P. Wand and B. Ripley, KernSmooth, R-package, version 2.22-21, http://www.r-project.org (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.