Free Access
Volume 11, February 2007
Special Issue: "Stochastic analysis and mathematical finance" in honor of Nicole El Karoui's 60th birthday
Page(s) 173 - 196
Published online 19 June 2007
  1. Y. Aït-Sahalia and J. Jacod, Volatility estimators for discretely sampled Lévy processes. To appear in Annals of Statistics (2005). [Google Scholar]
  2. T.G. Andersen, T. Bollerslev and F.X. Diebold, Parametric and nonparametric measurement of volatility, in Handbook of Financial Econometrics, Y. Aït-Sahalia and L.P. Hansen Eds., Amsterdam: North Holland. Forthcoming (2005). [Google Scholar]
  3. O.E. Barndorff-Nielsen and N. Shephard, Realised power variation and stochastic volatility. Bernoulli 9 (2003) 243–265. Correction published in pages 1109–1111. [CrossRef] [MathSciNet] [Google Scholar]
  4. O.E. Barndorff-Nielsen, S.E. Graversen, J. Jacod, M. Podolskij and N. Shephard, A central limit theorem for realised bipower variations of continuous semimartingales, in From Stochastic calculus to mathematical finance, the Shiryaev Festschrift, Y. Kabanov, R. Liptser, J. Stoyanov Eds., Springer-Verlag, Berlin (2006) 33–69. [Google Scholar]
  5. O.E. Barndorff-Nielsen, N. Shephard and M. Winkel, Limit theorems for multipower variation in the presence of jumps. Stoch. Processes Appl. 116 (2006) 796–806. [Google Scholar]
  6. A.N. Borodin and I.A. Ibragimov, Limit Theorems for Functionals of Random Walks. Proceedings Staklov Inst. Math. 195, A.M.S. (1995). [Google Scholar]
  7. J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes. 2nd ed., Springer-Verlag, Berlin (2003). [Google Scholar]
  8. J. Jacod and P. Protter, Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26 (1998) 267–307. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Jacod, The Euler scheme for Lévy driven stochastic differential equations: limit theorems. Ann. Probab. 32 (2004) 1830–1972. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Jacod, A. Jakubowski and J. Mémin, On asymptotic error in discretization of processes. Ann. Probab. 31 (2003) 592–608. [CrossRef] [MathSciNet] [Google Scholar]
  11. D. Lépingle, La variation d'ordre p des semimartingales. Z. für Wahr. Th. 36 (1976) 285–316. [Google Scholar]
  12. C. Mancini, Disentangling the jumps of the diffusion in a geometric jumping Brownian motion. Giornale dell'Instituto Italiano degli Attuari LXIV (2001) 19–47. [Google Scholar]
  13. J. Woerner, Power and multipower variation: inference for high frequency data, in Stochastic Finance, A.N. Shiryaev, M. do Rosário Grosshino, P. Oliviera, M. Esquivel Eds., Springer-Verlag, Berlin (2006) 343–354. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.